模型:
philschmid/distilbart-cnn-12-6-samsum
此模型使用Amazon SageMaker和新的Hugging Face深度学习容器进行训练。
更多信息请查看:
{
"dataset_name": "samsum",
"do_eval": true,
"do_train": true,
"fp16": true,
"learning_rate": 5e-05,
"model_name_or_path": "sshleifer/distilbart-cnn-12-6",
"num_train_epochs": 3,
"output_dir": "/opt/ml/model",
"per_device_eval_batch_size": 8,
"per_device_train_batch_size": 8,
"seed": 7
}
key | value |
---|---|
epoch | 3.0 |
init_mem_cpu_alloc_delta | 180338 |
init_mem_cpu_peaked_delta | 18282 |
init_mem_gpu_alloc_delta | 1222242816 |
init_mem_gpu_peaked_delta | 0 |
train_mem_cpu_alloc_delta | 6971403 |
train_mem_cpu_peaked_delta | 640733 |
train_mem_gpu_alloc_delta | 4910897664 |
train_mem_gpu_peaked_delta | 23331969536 |
train_runtime | 155.2034 |
train_samples | 14732 |
train_samples_per_second | 2.242 |
key | value |
---|---|
epoch | 3.0 |
eval_loss | 1.4209576845169067 |
eval_mem_cpu_alloc_delta | 868003 |
eval_mem_cpu_peaked_delta | 18250 |
eval_mem_gpu_alloc_delta | 0 |
eval_mem_gpu_peaked_delta | 328244736 |
eval_runtime | 0.6088 |
eval_samples | 818 |
eval_samples_per_second | 1343.647 |
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/distilbart-cnn-12-6-samsum")
conversation = '''Jeff: Can I train a ? Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
'''
nlp(conversation)