模型:

philschmid/distilroberta-base-ner-wikiann-conll2003-3-class

英文

distilroberta-base-ner-wikiann-conll2003-3-class

该模型是在wikiann和conll2003数据集上经过微调的版本。它由wikiann的类别组成。

O (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4) B-LOC (5), I-LOC (6).

评估F1-Score: 96.25(合并数据集)测试F1-Score: 92.41(合并数据集)

模型使用

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-3-class")
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-3-class")

nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Philipp and live in Germany"

nlp(example)

训练过程

训练超参数

训练过程中使用了以下超参数:

  • learning_rate: 4.9086903597787154e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

训练结果

在评估集上获得以下结果:

  • Loss: 0.0520
  • Precision: 0.9625
  • Recall: 0.9667
  • F1: 0.9646
  • Accuracy: 0.9914

在测试集上获得以下结果:

  • Loss: 0.141
  • Precision: 0.917
  • Recall: 0.9313
  • F1: 0.9241
  • Accuracy: 0.9807

框架版本

  • Transformers 4.6.1
  • Pytorch 1.8.1+cu101
  • Datasets 1.6.2
  • Tokenizers 0.10.3