模型:
philschmid/falcon-40b-instruct-GPTQ-inference-endpoints
Chat & support: my new Discord server
Want to contribute? TheBloke's Patreon page
This repo contains an experimantal GPTQ 4bit model for Falcon-40B-Instruct .
It is the result of quantising to 4bit using AutoGPTQ .
Please note this is an experimental GPTQ model. Support for it is currently quite limited.
It is also expected to be VERY SLOW . This is currently unavoidable, but is being looked at.
This 4bit model requires at least 35GB VRAM to load. It can be used on 40GB or 48GB cards, but not less.
Please be aware that you should currently expect around 0.7 tokens/s on 40B Falcon GPTQ.
AutoGPTQ is required: pip install auto-gptq
AutoGPTQ provides pre-compiled wheels for Windows and Linux, with CUDA toolkit 11.7 or 11.8.
If you are running CUDA toolkit 12.x, you will need to compile your own by following these instructions:
git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ pip install .
These manual steps will require that you have the Nvidia CUDA toolkit installed.
There is provisional AutoGPTQ support in text-generation-webui.
This requires text-generation-webui as of commit 204731952ae59d79ea3805a425c73dd171d943c3.
So please first update text-genration-webui to the latest version.
Please be aware that this command line argument causes Python code provided by Falcon to be executed on your machine.
This code is required at the moment because Falcon is too new to be supported by Hugging Face transformers. At some point in the future transformers will support the model natively, and then trust_remote_code will no longer be needed.
In this repo you can see two .py files - these are the files that get executed. They are copied from the base repo at Falcon-7B-Instruct .
To run this code you need to install AutoGPTQ and einops:
pip install auto-gptq pip install einops
You can then run this example code:
import torch from transformers import AutoTokenizer from auto_gptq import AutoGPTQForCausalLM # Download the model from HF and store it locally, then reference its location here: quantized_model_dir = "/path/to/falcon40b-instruct-GPTQ" from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=False) model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False, use_safetensors=True, torch_dtype=torch.float32, trust_remote_code=True) prompt = "Write a story about llamas" prompt_template = f"### Instruction: {prompt}\n### Response:" tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8) print(tokenizer.decode(output[0]))
gptq_model-4bit--1g.safetensors
This will work with AutoGPTQ as of commit 3cb1bf5 ( 3cb1bf5a6d43a06dc34c6442287965d1838303d3 )
It was created without groupsize to reduce VRAM requirements, and with desc_act (act-order) to improve inference quality.
For further support, and discussions on these models and AI in general, join us at: TheBloke AI's Discord server
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute, it'd be most gratefully received and will help me to keep providing models, and work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions, plus other benefits.
Patreon special mentions : Aemon Algiz; Johann-Peter Hartmann; Talal Aujan; Jonathan Leane; Illia Dulskyi; Khalefa Al-Ahmad; senxiiz; Sebastain Graf; Eugene Pentland; Nikolai Manek; Luke Pendergrass.
Thank you to all my generous patrons and donaters.
Falcon-40B-Instruct 是由 TII 基于 Falcon-40B 构建的一个有40B参数的仅解码的模型,并在混合了 Baize 的数据集上进行了微调。它遵循 TII Falcon LLM License 进行发布。
论文即将发布 ?。
? 这是一个指导模型,可能不适合进一步微调。如果您有兴趣构建自己的指导/聊天模型,建议从 Falcon-40B 开始。
? 是否在寻找一个更小、更便宜的模型? Falcon-7B-Instruct 是Falcon-40B-Instruct的小兄弟!
from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-40b-instruct" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}")
Falcon-40B-Instruct 在聊天数据集上进行了微调。
生产中的使用需要充分评估风险并采取适当的预防措施;任何被视为不负责任或有害的用途。
Falcon-40B-Instruct 主要在英语数据上进行训练,不适合正确推广到其他语言。此外,由于其训练数据来自代表网络的大规模语料库,它会携带在线上常见的刻板印象和偏见。
我们建议Falcon-40B-Instruct的用户制定适当的防范措施,并为任何生产使用采取适当的预防措施。
from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-40b-instruct" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}")
Falcon-40B-Instruct 在 Bai ze 上微调,使用了 RefinedWeb 数据的5%。
论文即将发布。
请参阅 OpenLLM Leaderboard 以获取早期结果。
有关预训练的更多信息,请参阅 Falcon-40B .
Falcon-40B是一个仅针对因果关系的解码模型,训练任务是预测下一个令牌。
该架构在很大程度上借鉴了GPT-3论文( Brown et al., 2020 ),但有以下差异:
对于multiquery,我们使用的是一种内部变体,每个张量并行度都使用独立的键和值。
Hyperparameter | Value | Comment |
---|---|---|
Layers | 60 | |
d_model | 8192 | |
head_dim | 64 | Reduced to optimise for FlashAttention |
Vocabulary | 65024 | |
Sequence length | 2048 |
Falcon-40B-Instruct在AWS SageMaker上训练,使用P4d实例的64个A100 40GB GPU。
软件Falcon-40B-Instruct使用自定义的分布式训练代码库Gigatron进行训练。它使用三维并行性方法结合了ZeRO和高性能Triton内核(FlashAttention等)。
论文即将发布 ?.
Falcon-40B-Instruct在 TII Falcon LLM License 下发布。一般来说,
falconllm@tii.ae