t5-base-qa-squad-v1.1-portuguese is a QA model (Question Answering) in Portuguese that was finetuned on 27/01/2022 in Google Colab from the model unicamp-dl/ptt5-base-portuguese-vocab of Neuralmind on the dataset SQUAD v1.1 in portuguese from the Deep Learning Brasil group by using a Test2Text-Generation objective.
Due to the small size of T5 base and finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset:
Check our other QA models in Portuguese finetuned on SQUAD v1.1:
NLP nas empresas | Como eu treinei um modelo T5 em português na tarefa QA no Google Colab (27/01/2022)
You can test this model into the widget of this page.
Use as well the QA App | T5 base pt that allows using the model T5 base finetuned on the QA task with the SQuAD v1.1 pt dataset.
# install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # model & tokenizer model_name = "pierreguillou/t5-base-qa-squad-v1.1-portuguese" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # parameters max_target_length=32 num_beams=1 early_stopping=True input_text = 'question: Quando foi descoberta a Covid-19? context: A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano.' label = '1 de dezembro de 2019' inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(inputs["input_ids"], max_length=max_target_length, num_beams=num_beams, early_stopping=early_stopping ) pred = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) print('true answer |', label) print('pred |', pred)
You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence.
!pip install transformers import transformers from transformers import pipeline # model model_name = "pierreguillou/t5-base-qa-squad-v1.1-portuguese" # parameters max_target_length=32 num_beams=1 early_stopping=True clean_up_tokenization_spaces=True input_text = 'question: Quando foi descoberta a Covid-19? context: A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano.' label = '1 de dezembro de 2019' text2text = pipeline( "text2text-generation", model=model_name, max_length=max_target_length, num_beams=num_beams, early_stopping=early_stopping, clean_up_tokenization_spaces=clean_up_tokenization_spaces ) pred = text2text(input_text) print('true answer |', label) print('pred |', pred)
The notebook of finetuning ( HuggingFace_Notebook_t5-base-portuguese-vocab_question_answering_QA_squad_v11_pt.ipynb ) is in github.
# do training and evaluation do_train = True do_eval= True # batch batch_size = 4 gradient_accumulation_steps = 3 per_device_train_batch_size = batch_size per_device_eval_batch_size = per_device_train_batch_size*16 # LR, wd, epochs learning_rate = 1e-4 weight_decay = 0.01 num_train_epochs = 10 fp16 = True # logs logging_strategy = "steps" logging_first_step = True logging_steps = 3000 # if logging_strategy = "steps" eval_steps = logging_steps # checkpoints evaluation_strategy = logging_strategy save_strategy = logging_strategy save_steps = logging_steps save_total_limit = 3 # best model load_best_model_at_end = True metric_for_best_model = "f1" #"loss" if metric_for_best_model == "loss": greater_is_better = False else: greater_is_better = True # evaluation num_beams = 1
Num examples = 87510 Num Epochs = 10 Instantaneous batch size per device = 4 Total train batch size (w. parallel, distributed & accumulation) = 12 Gradient Accumulation steps = 3 Total optimization steps = 72920 Step Training Loss Exact Match F1 3000 0.776100 61.807001 75.114517 6000 0.545900 65.260170 77.468930 9000 0.460500 66.556291 78.491938 12000 0.393400 66.821192 78.745397 15000 0.379800 66.603595 78.815515 18000 0.298100 67.578051 79.287899 21000 0.303100 66.991485 78.979669 24000 0.251600 67.275307 78.929923 27000 0.237500 66.972564 79.333612 30000 0.220500 66.915799 79.236574 33000 0.182600 67.029328 78.964212 36000 0.190600 66.982025 79.086125