模型:
pszemraj/grammar-synthesis-small
This model is a fine-tuned version of google/t5-small-lm-adapt for grammar correction on an expanded version of the JFLEG dataset.
usage in Python (after pip install transformers ):
from transformers import pipeline corrector = pipeline( 'text2text-generation', 'pszemraj/grammar-synthesis-small', ) raw_text = 'i can has cheezburger' results = corrector(raw_text) print(results)
Check out a simple demo in Google Colab here .
The intent is to create a text2text language model that successfully completes "single-shot grammar correction" on a potentially grammatically incorrect text that could have a lot of mistakes with the important qualifier of it does not semantically change text/information that IS grammatically correct.
Compare some of the heavier-error examples on other grammar correction models to see the difference :)
Obviously, this section is quite general as there are many things one can use "general single-shot grammar correction" for. Some ideas or use cases:
An example of this model running on CPU with beam search:
original response: ive heard it attributed to a bunch of different philosophical schools, including stoicism, pragmatism, existentialism and even some forms of post-structuralism. i think one of the most interesting (and most difficult) philosophical problems is trying to let dogs (or other animals) out of cages. the reason why this is a difficult problem is because it seems to go against our grain (so to synthesizing took 306.12 seconds Final response in 1294.857 s: I've heard it attributed to a bunch of different philosophical schools, including solipsism, pragmatism, existentialism and even some forms of post-structuralism. i think one of the most interesting (and most difficult) philosophical problems is trying to let dogs (or other animals) out of cages. the reason why this is a difficult problem is because it seems to go against our grain (so to speak)
Note: that I have some other logic that removes any periods at the end of the final sentence in this chatbot setting to avoid coming off as passive aggressive
More information needed ?
The following hyperparameters were used during training: