模型:
pysentimiento/bertweet-pt-sentiment
语言:
预印本库:
arxiv:2106.09462仓库: https://github.com/pysentimiento/pysentimiento/
用于葡萄牙语极性检测的模型。基础模型是 BERTabaporu ,一个训练于葡萄牙推特数据的 RoBERTa 模型。
使用 POS,NEG,NEU 标签。
直接通过 pysentimiento 进行使用
from pysentimiento import create_analyzer analyzer = create_analyzer(task="sentiment", lang="pt") analyzer.predict("isto é bonito") # returns AnalyzerOutput(output=POS, probas={POS: 0.998, NEG: 0.002, NEU: 0.000})
如果您在研究中使用了此模型,请引用 pysentimiento 和 RoBERTuito 论文:
@misc{perez2021pysentimiento, title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, year={2021}, eprint={2106.09462}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc {pablo_botton_da_costa_2022, author = { {pablo botton da costa} }, title = { bertabaporu-base-uncased (Revision 1982d0f) }, year = 2022, url = { https://huggingface.co/pablocosta/bertabaporu-base-uncased }, doi = { 10.57967/hf/0019 }, publisher = { Hugging Face } } @InProceedings{BRUM18.389, author = {Henrico Brum and Maria das Gra\c{c}as Volpe Nunes}, title = "{Building a Sentiment Corpus of Tweets in Brazilian Portuguese}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and HÚlŔne Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }