模型:
sakares/wav2vec2-large-xlsr-thai-demo
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Thai using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz.
The model can be used directly (without a language model) as follows:
import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from pythainlp.tokenize import word_tokenize test_dataset = load_dataset("common_voice", "th", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("sakares/wav2vec2-large-xlsr-thai-demo") model = Wav2Vec2ForCTC.from_pretrained("sakares/wav2vec2-large-xlsr-thai-demo") resampler = torchaudio.transforms.Resample(48_000, 16_000) ## For Thai NLP Library, please feel free to check https://pythainlp.github.io/docs/2.2/api/tokenize.html def th_tokenize(batch): batch["sentence"] = " ".join(word_tokenize(batch["sentence"], engine="newmm")) return batch # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn).map(th_tokenize) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2])
Usage script here
The model can be evaluated as follows on the {language} test data of Common Voice.
import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from pythainlp.tokenize import word_tokenize import re test_dataset = load_dataset("common_voice", "th", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("sakares/wav2vec2-large-xlsr-thai-demo") model = Wav2Vec2ForCTC.from_pretrained("sakares/wav2vec2-large-xlsr-thai-demo") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) ## For Thai NLP Library, please feel free to check https://pythainlp.github.io/docs/2.2/api/tokenize.html def th_tokenize(batch): batch["sentence"] = " ".join(word_tokenize(batch["sentence"], engine="newmm")) return batch # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn).map(th_tokenize) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result : 44.46 % Evaluate script here
The Common Voice train , validation datasets were used for training.
The script used for training can be found here