模型:
sb3/ppo_lstm-CartPoleNoVel-v1
这是一个经过训练的 RecurrentPPO 代理模型,在 CartPoleNoVel-v1 上进行游戏,使用了 stable-baselines3 library 和 RL Zoo 。
RL Zoo是一个用于稳定基线3强化学习代理训练的框架,包括了超参数优化和预训练代理。
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo SB3: https://github.com/DLR-RM/stable-baselines3 SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo_lstm --env CartPoleNoVel-v1 -orga sb3 -f logs/ python enjoy.py --algo ppo_lstm --env CartPoleNoVel-v1 -f logs/
python train.py --algo ppo_lstm --env CartPoleNoVel-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo_lstm --env CartPoleNoVel-v1 -f logs/ -orga sb3
OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.2'), ('ent_coef', 0.0), ('gae_lambda', 0.8), ('gamma', 0.98), ('learning_rate', 'lin_0.001'), ('n_envs', 8), ('n_epochs', 20), ('n_steps', 32), ('n_timesteps', 100000.0), ('normalize', True), ('policy', 'MlpLstmPolicy'), ('policy_kwargs', 'dict( ortho_init=False, activation_fn=nn.ReLU, ' 'lstm_hidden_size=64, enable_critic_lstm=True, ' 'net_arch=[dict(pi=[64], vf=[64])] )'), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])