模型:
sdadas/st-polish-paraphrase-from-mpnet
这是一个模型:它将句子和段落映射到一个768维的稠密向量空间,可以用于聚类或语义搜索等任务。
当您安装了 sentence-transformers 后,使用这个模型会变得很容易:
pip install -U sentence-transformers
然后您可以像这样使用该模型:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sdadas/st-polish-paraphrase-from-mpnet') embeddings = model.encode(sentences) print(embeddings)
如果没有 sentence-transformers ,您可以像这样使用该模型:首先,将输入数据传递给变换器模型,然后必须在上下文化词嵌入之上应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sdadas/st-polish-paraphrase-from-mpnet') model = AutoModel.from_pretrained('sdadas/st-polish-paraphrase-from-mpnet') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
要对该模型进行自动化评估,请参阅句子嵌入基准测试: https://seb.sbert.net
SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )