模型:

sentence-transformers/msmarco-distilbert-dot-v5

英文

msmarco-distilbert-dot-v5

这是一个 sentence-transformers 模型:它将句子和段落映射到一个768维的密集向量空间,并专为语义搜索而设计。它是使用来自 MS MARCO dataset 的50万个(查询,答案)对进行训练的。要了解语义搜索的介绍,请参阅: SBERT.net - Semantic Search

用法(Sentence-Transformers)

当您安装了 sentence-transformers 之后,使用该模型变得很容易:

pip install -U sentence-transformers

然后您可以像这样使用该模型:

from sentence_transformers import SentenceTransformer, util

query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]

#Load the model
model = SentenceTransformer('sentence-transformers/msmarco-distilbert-dot-v5')

#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)

#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
print("Query:", query)
for doc, score in doc_score_pairs:
    print(score, doc)

用法(HuggingFace Transformers)

没有 sentence-transformers ,您可以像这样使用该模型:首先,将输入通过变换器模型,然后必须对上下文化的词嵌入应用正确的汇集操作。

from transformers import AutoTokenizer, AutoModel
import torch

#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output.last_hidden_state
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


#Encode text
def encode(texts):
    # Tokenize sentences
    encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')

    # Compute token embeddings
    with torch.no_grad():
        model_output = model(**encoded_input, return_dict=True)

    # Perform pooling
    embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

    return embeddings


# Sentences we want sentence embeddings for
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-dot-v5")
model = AutoModel.from_pretrained("sentence-transformers/msmarco-distilbert-dot-v5")

#Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)

#Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
print("Query:", query)
for doc, score in doc_score_pairs:
    print(score, doc)

技术细节

以下是如何使用该模型的一些技术细节:

Setting Value
Dimensions 768
Max Sequence Length 512
Produces normalized embeddings No
Pooling-Method Mean pooling
Suitable score functions dot-product (e.g. util.dot_score )

评估结果

对于该模型的自动评估,请参阅 句子嵌入基准: https://seb.sbert.net

训练

请参阅该存储库中的 train_script.py 以获取所使用的训练脚本。

该模型是使用以下参数进行训练的:

DataLoader :

torch.utils.data.dataloader.DataLoader 长度为7858,具有以下参数:

{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

损失 :

sentence_transformers.losses.MarginMSELoss.MarginMSELoss

fit() 方法的参数:

{
    "callback": null,
    "epochs": 30,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 1e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 10000,
    "weight_decay": 0.01
}

完整模型架构

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

引用和作者

该模型是由 sentence-transformers 训练的。

如果您发现该模型有帮助,请随意引用我们的出版物 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}

许可证

该模型在Apache 2许可证下发布。但请注意,该模型是在MS MARCO数据集上训练的,该数据集具有自己的许可限制: MS MARCO - Terms and Conditions