模型:

sentence-transformers/msmarco-roberta-base-ance-firstp

英文

sentence-transformers/msmarco-roberta-base-ance-firstp

这是一个将句子和段落映射到768维密集向量空间的模型,可用于聚类或语义搜索等任务。

使用方法(Sentence-Transformers)

安装了 sentence-transformers 后,使用此模型变得很容易:

pip install -U sentence-transformers

然后您可以像这样使用模型:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/msmarco-roberta-base-ance-firstp')
embeddings = model.encode(sentences)
print(embeddings)

评估结果

要进行对该模型的自动评估,请参阅 句子嵌入基准(Sentence Embeddings Benchmark): https://seb.sbert.net

完整模型架构

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
  (3): LayerNorm(
    (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
  )
)

引用和作者

参考文献: ANCE Model