模型:
sentence-transformers/paraphrase-MiniLM-L3-v2
任务:
句子相似度数据集:
flax-sentence-embeddings/stackexchange_xml s2orc ms_marco wiki_atomic_edits snli multi_nli embedding-data/altlex embedding-data/simple-wiki embedding-data/flickr30k-captions embedding-data/coco_captions embedding-data/sentence-compression embedding-data/QQP yahoo_answers_topics 3Ayahoo_answers_topics 3Aembedding-data/QQP 3Aembedding-data/sentence-compression 3Aembedding-data/coco_captions 3Aembedding-data/flickr30k-captions 3Aembedding-data/simple-wiki 3Aembedding-data/altlex 3Amulti_nli 3Asnli 3Awiki_atomic_edits 3Ams_marco 3As2orc 3Aflax-sentence-embeddings/stackexchange_xml预印本库:
arxiv:1908.10084许可:
apache-2.0这是一个模型: 它将句子和段落映射到一个384维的密集向量空间,并可用于聚类或语义搜索等任务。
安装了该模型后使用变得很容易:
pip install -U sentence-transformers
然后可以像这样使用模型:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L3-v2') embeddings = model.encode(sentences) print(embeddings)
如果没有安装 sentence-transformers ,则可以像这样使用模型:首先,将输入传递到变换器模型,然后必须在上下文化的单词嵌入之上应用正确的汇聚操作。
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
对于该模型的自动化评估,请参见句子嵌入基准: https://seb.sbert.net
SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )
此模型由 sentence-transformers 训练。
如果您觉得该模型有帮助,请随时引用我们的出版物 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks :
@inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", }