模型:
shi-labs/oneformer_coco_dinat_large
OneFormer 模型是在 COCO 数据集上训练的(大尺寸版本,Dinat 骨干网络)。它由 Jain 等人在 OneFormer: One Transformer to Rule Universal Image Segmentation 论文中介绍,并于 this repository 首次发布。
OneFormer 是第一个多任务通用图像分割框架。它只需要使用单个通用架构、单个模型和单个数据集进行训练,即可在语义分割、实例分割和全景分割任务上优于现有的专用模型。OneFormer 使用任务令牌来使模型在特定任务上进行条件训练,并在推断过程中动态适应任务,所有这些只需要一个模型。
您可以使用此特定检查点进行语义分割、实例分割和全景分割。请查看 model hub 以查找在其他数据集上进行微调的版本。
以下是如何使用此模型的方法:
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation from PIL import Image import requests url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/coco.jpeg" image = Image.open(requests.get(url, stream=True).raw) # Loading a single model for all three tasks processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_dinat_large") model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_coco_dinat_large") # Semantic Segmentation semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt") semantic_outputs = model(**semantic_inputs) # pass through image_processor for postprocessing predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # Instance Segmentation instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt") instance_outputs = model(**instance_inputs) # pass through image_processor for postprocessing predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"] # Panoptic Segmentation panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt") panoptic_outputs = model(**panoptic_inputs) # pass through image_processor for postprocessing predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
有关更多示例,请参阅 documentation 。
@article{jain2022oneformer, title={{OneFormer: One Transformer to Rule Universal Image Segmentation}}, author={Jitesh Jain and Jiachen Li and MangTik Chiu and Ali Hassani and Nikita Orlov and Humphrey Shi}, journal={arXiv}, year={2022} }