模型:
shi-labs/oneformer_coco_swin_large
OneFormer模型基于COCO数据集进行训练(大型版本,Swin骨干)。该模型在Jain等人的论文 OneFormer: One Transformer to Rule Universal Image Segmentation 中首次提出,并于 this repository 首次发布。
OneFormer是第一个多任务通用图像分割框架。它只需通过单一通用架构、单一模型和单一数据集进行训练,即可在语义分割、实例分割和全景分割任务上优于现有的专门化模型。OneFormer使用任务令牌来将模型与当前任务相关联,使得架构在训练时具有任务指导性,在推断时具有任务动态性,而所有这些都由单一模型完成。
您可以使用此特定检查点进行语义分割、实例分割和全景分割。请参阅 model hub 以查找在其他数据集上进行微调的其他版本。
以下是如何使用此模型的方法:
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation from PIL import Image import requests url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/coco.jpeg" image = Image.open(requests.get(url, stream=True).raw) # Loading a single model for all three tasks processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large") model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_coco_swin_large") # Semantic Segmentation semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt") semantic_outputs = model(**semantic_inputs) # pass through image_processor for postprocessing predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # Instance Segmentation instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt") instance_outputs = model(**instance_inputs) # pass through image_processor for postprocessing predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"] # Panoptic Segmentation panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt") panoptic_outputs = model(**panoptic_inputs) # pass through image_processor for postprocessing predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
更多示例,请参阅 documentation 。
@article{jain2022oneformer, title={{OneFormer: One Transformer to Rule Universal Image Segmentation}}, author={Jitesh Jain and Jiachen Li and MangTik Chiu and Ali Hassani and Nikita Orlov and Humphrey Shi}, journal={arXiv}, year={2022} }