模型:
shibing624/code-autocomplete-distilgpt2-python
code-autocomplete是一个用于Python的代码提示插件。
code-autocomplete可以使用GPT2自动完成代码行和代码块的编写。
开源仓库: code-autocomplete ,支持GPT2模型,用法:
from autocomplete.gpt2_coder import GPT2Coder m = GPT2Coder("shibing624/code-autocomplete-distilgpt2-python") print(m.generate('import torch.nn as')[0])
同样,使用huggingface/transformers:
请使用与'GPT2'相关的函数来加载此模型!
import os from transformers import GPT2Tokenizer, GPT2LMHeadModel os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" tokenizer = GPT2Tokenizer.from_pretrained("shibing624/code-autocomplete-distilgpt2-python") model = GPT2LMHeadModel.from_pretrained("shibing624/code-autocomplete-distilgpt2-python") prompts = [ """from torch import nn class LSTM(Module): def __init__(self, *, n_tokens: int, embedding_size: int, hidden_size: int, n_layers: int):""", """import numpy as np import torch import torch.nn as""", "import java.util.ArrayList", "def factorial(n):", ] for prompt in prompts: input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=64 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, repetition_penalty=1.0, do_sample=True, num_return_sequences=1, length_penalty=2.0, early_stopping=True) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) print("=" * 20)
输出:
from torch import nn class LSTM(Module): def __init__(self, *, n_tokens: int, embedding_size: int, hidden_size: int, n_layers: int): self.embedding_size = embedding_size ==================== import numpy as np import torch import torch.nn as nn import torch.nn.functional as F
模型文件:
code-autocomplete-distilgpt2-python ├── config.json ├── merges.txt ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.json
下载 code-autocomplete ,
cd autocomplete python create_dataset.py
如果你想训练code-autocomplete GPT2模型,请参考 https://github.com/shibing624/code-autocomplete/blob/main/autocomplete/gpt2_coder.py
在此处测试整个生成能力: https://transformer.huggingface.co/doc/gpt2-large
预训练模型使用有因果语言建模(CLM)目标的英语语言。它在 this paper 中被引入,并在 this page 首次发布。
声明:GPT-2发布团队还为他们的模型撰写了一份 model card 。Hugging Face团队编写了此模型卡的内容,以补充他们提供的信息,并给出了特定的偏见示例。
@misc{code-autocomplete, author = {Xu Ming}, title = {code-autocomplete: Code AutoComplete with GPT model}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, url = {https://github.com/shibing624/code-autocomplete}, }