模型:
sileod/roberta-base-discourse-marker-prediction
以Discovery数据集上进行论述标记预测的roberta-base预训练模型,验证准确率达到30.93%(多数类为0.57%)
https://github.com/sileod/discovery
https://huggingface.co/datasets/discovery
该模型还可用作自然语言理解、语用学和论述任务的预训练模型
@inproceedings{sileo-etal-2019-mining, title = "Mining Discourse Markers for Unsupervised Sentence Representation Learning", author = "Sileo, Damien and Van De Cruys, Tim and Pradel, Camille and Muller, Philippe", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)", month = jun, year = "2019", address = "Minneapolis, Minnesota", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/N19-1351", doi = "10.18653/v1/N19-1351", pages = "3477--3486", }