模型:
sonoisa/sentence-luke-japanese-base-lite
这是一个日语句子-LUKE模型。
这是一个日语用的Sentence-LUKE模型。
它是在与数据集和设置相同的情况下进行训练的。根据我手头的非公开数据集,与 日本語Sentence-BERTモデル 相比,它具有相等或略高的定量精度,并且在定性精度方面表现更好。
我使用了预训练模型 studio-ousia/luke-japanese-base-lite 。
执行推理需要安装SentencePiece(pip install sentencepiece)。
from transformers import MLukeTokenizer, LukeModel import torch class SentenceLukeJapanese: def __init__(self, model_name_or_path, device=None): self.tokenizer = MLukeTokenizer.from_pretrained(model_name_or_path) self.model = LukeModel.from_pretrained(model_name_or_path) self.model.eval() if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = torch.device(device) self.model.to(device) def _mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) @torch.no_grad() def encode(self, sentences, batch_size=8): all_embeddings = [] iterator = range(0, len(sentences), batch_size) for batch_idx in iterator: batch = sentences[batch_idx:batch_idx + batch_size] encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", truncation=True, return_tensors="pt").to(self.device) model_output = self.model(**encoded_input) sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu') all_embeddings.extend(sentence_embeddings) return torch.stack(all_embeddings) MODEL_NAME = "sonoisa/sentence-luke-japanese-base-lite" model = SentenceLukeJapanese(MODEL_NAME) sentences = ["暴走したAI", "暴走した人工知能"] sentence_embeddings = model.encode(sentences, batch_size=8) print("Sentence embeddings:", sentence_embeddings)