模型:
sonoisa/sentence-t5-base-ja-mean-tokens
这是一个日本句子-T5模型。
这是一个日语用的Sentence-T5模型。
我们使用了预先训练的模型 sonoisa/t5-base-japanese 。进行推理需要安装sentencepiece(pip install sentencepiece)。
根据我们手头的非公开数据集,准确度与 sonoisa/sentence-bert-base-ja-mean-tokens 相当。
from transformers import T5Tokenizer, T5Model import torch class SentenceT5: def __init__(self, model_name_or_path, device=None): self.tokenizer = T5Tokenizer.from_pretrained(model_name_or_path, is_fast=False) self.model = T5Model.from_pretrained(model_name_or_path).encoder self.model.eval() if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = torch.device(device) self.model.to(device) def _mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) @torch.no_grad() def encode(self, sentences, batch_size=8): all_embeddings = [] iterator = range(0, len(sentences), batch_size) for batch_idx in iterator: batch = sentences[batch_idx:batch_idx + batch_size] encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", truncation=True, return_tensors="pt").to(self.device) model_output = self.model(**encoded_input) sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu') all_embeddings.extend(sentence_embeddings) return torch.stack(all_embeddings) MODEL_NAME = "sonoisa/sentence-t5-base-ja-mean-tokens" model = SentenceT5(MODEL_NAME) sentences = ["暴走したAI", "暴走した人工知能"] sentence_embeddings = model.encode(sentences, batch_size=8) print("Sentence embeddings:", sentence_embeddings)