模型:
superb/wav2vec2-base-superb-sid
这是一个 S3PRL's Wav2Vec2 for the SUPERB Speaker Identification task 的移植版本。
基础模型是 wav2vec2-base ,它在16kHz采样的语音音频上进行了预训练。使用该模型时,请确保输入的语音也是以16kHz采样。
更多信息请参考 SUPERB: Speech processing Universal PERformance Benchmark
说话人识别(SI)将每个话语分类为其说话人身份,属于多类别分类任务,其中说话人在训练和测试中均为预定义的集合。采用了广泛使用的 VoxCeleb1 数据集
原始模型的训练和评估说明请参考 S3PRL downstream task README 。
您可以通过音频分类流程使用该模型:
from datasets import load_dataset from transformers import pipeline dataset = load_dataset("anton-l/superb_demo", "si", split="test") classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-sid") labels = classifier(dataset[0]["file"], top_k=5)
或直接使用该模型:
import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "si", split="test") dataset = dataset.map(map_to_array) model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
评估指标是准确率。
s3prl | transformers | |
---|---|---|
test | 0.7518 | 0.7518 |
@article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} }