模型:

superb/wav2vec2-large-superb-er

英文

Wav2Vec2-Large用于情绪识别

模型描述

这是 S3PRL's Wav2Vec2 for the SUPERB Emotion Recognition task 的移植版本。

基础模型是 wav2vec2-large-lv60 ,在16kHz采样的语音音频上进行了预训练。在使用模型时,请确保您的语音输入也以16kHz进行采样。

有关更多信息,请参阅 SUPERB: Speech processing Universal PERformance Benchmark

任务和数据集描述

情绪识别(ER)为每个话语预测一个情绪类别。采用了最常用的情绪识别数据集 IEMOCAP ,并遵循常规评估协议:删除不平衡的情绪类别,使最后的四个类别具有相似数量的数据点,并在标准划分的五个折上进行交叉验证。

有关原始模型的训练和评估说明,请参阅 S3PRL downstream task README

使用示例

您可以通过音频分类流程使用该模型:

from datasets import load_dataset
from transformers import pipeline

dataset = load_dataset("anton-l/superb_demo", "er", split="session1")

classifier = pipeline("audio-classification", model="superb/wav2vec2-large-superb-er")
labels = classifier(dataset[0]["file"], top_k=5)

或直接使用模型:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor

def map_to_array(example):
    speech, _ = librosa.load(example["file"], sr=16000, mono=True)
    example["speech"] = speech
    return example

# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
dataset = dataset.map(map_to_array)

model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-er")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-er")

# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")

logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]

评估结果

评估指标为准确度。

s3prl transformers
session1 0.6564 N/A

BibTeX条目和引用信息

@article{yang2021superb,
  title={SUPERB: Speech processing Universal PERformance Benchmark},
  author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
  journal={arXiv preprint arXiv:2105.01051},
  year={2021}
}