模型:
superb/wav2vec2-large-superb-ic
这是 S3PRL's Wav2Vec2 for the SUPERB Intent Classification task 的移植版本。
基础模型是 wav2vec2-large-lv60 ,该模型是在采样率为16kHz的语音音频上进行预训练的。在使用模型时,请确保输入的语音也是以16kHz进行采样的。
更多信息请参考 SUPERB: Speech processing Universal PERformance Benchmark
意图分类(IC)将话语划分为预定义的类别,以确定说话者的意图。SUPERB 使用 Fluent Speech Commands 数据集,其中每个话语都带有三个意图标签:action、object 和 location。
关于原始模型的训练和评估说明,请参考 S3PRL downstream task README 。
您可以直接使用以下方式使用模型:
import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ic", split="test") dataset = dataset.map(map_to_array) model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-ic") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-ic") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits action_ids = torch.argmax(logits[:, :6], dim=-1).tolist() action_labels = [model.config.id2label[_id] for _id in action_ids] object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist() object_labels = [model.config.id2label[_id + 6] for _id in object_ids] location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist() location_labels = [model.config.id2label[_id + 20] for _id in location_ids]
评估指标为准确度。
s3prl | transformers | |
---|---|---|
test | 0.9528 | N/A |
@article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} }