一个为零样本和小样本文本分类训练的连体网络模型。
基础模型是 xlm-roberta-base 。它被训练在 SNLI 、 MNLI 、 ANLI 和 XNLI 上。
这是一个 sentence-transformers 模型:它将句子和段落映射到一个768维稠密向量空间。
在安装了 sentence-transformers 之后,使用这个模型变得很容易:
pip install -U sentence-transformers
然后你可以像这样使用这个模型:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings)
没有 sentence-transformers ,你可以像这样使用这个模型:首先,将你的输入通过变形器模型,然后在上下文化的词嵌入之上应用正确的汇集操作。
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)