模型:
tawkit/phil-pyannote-speaker-diarization-endpoint
任务:
自动语音识别类库:
pyannote.audio数据集:
ami dihard voxconverse aishell repere voxceleb 3Avoxceleb 3Arepere 3Aaishell 3Avoxconverse 3Adihard 3Aami其他:
pyannote pyannote-audio-pipeline audio voice speech speaker speaker-diarization speaker-change-detection 语音活动检测 overlapped-speech-detection预印本库:
arxiv:2012.01477许可:
mit基于pyannote.audio 2.0:请查看 installation instructions .
# load the pipeline from Hugginface Hub from pyannote.audio import Pipeline pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2022.07") # apply the pipeline to an audio file diarization = pipeline("audio.wav") # dump the diarization output to disk using RTTM format with open("audio.rttm", "w") as rttm: diarization.write_rttm(rttm)
如果事先知道说话人数量,可以使用 num_speakers 选项:
diarization = pipeline("audio.wav", num_speakers=2)
可以使用 min_speakers 和 max_speakers 选项提供说话人数量的下限和/或上限:
diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5)
如果你感兴趣,可以尝试调整各种流水线超参数。 例如,可以通过增加 segmentation_onset 阈值来使用更加激进的语音活动检测:
hparams = pipeline.parameters(instantiated=True) hparams["segmentation_onset"] += 0.1 pipeline.instantiate(hparams)
使用一块Nvidia Tesla V100 SXM2 GPU(用于神经推理部分)和一颗Intel Cascade Lake 6248 CPU(用于聚类部分),实时系数约为5%。
换句话说,处理一小时的对话大约需要3分钟。
该流水线在不断增长的数据集集合上进行基准测试。
处理是完全自动的:
...使用最严格的对话错误率(DER)设置进行评估(在 this paper 中称为“完全”):
Benchmark | DER% | FA% | Miss% | Conf% | Expected output | File-level evaluation |
---|---|---|---|---|---|---|
1238321 | 14.61 | 3.31 | 4.35 | 6.95 | RTTM | eval |
1239321 12310321 | 18.21 | 3.28 | 11.07 | 3.87 | RTTM | eval |
12311321 12310321 | 29.00 | 2.71 | 21.61 | 4.68 | RTTM | eval |
12313321 12314321 | 30.24 | 3.71 | 16.86 | 9.66 | RTTM | eval |
12315321 | 20.99 | 4.25 | 10.74 | 6.00 | RTTM | eval |
12316321 | 12.62 | 1.55 | 3.30 | 7.76 | RTTM | eval |
12317321 | 12.76 | 3.45 | 3.85 | 5.46 | RTTM | eval |
如需商业咨询和科学咨询,请联系 me . 对于 technical questions 和 bug reports ,请查看 pyannote.audio GitHub 存储库。
@inproceedings{Bredin2021, Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}}, Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine}, Booktitle = {Proc. Interspeech 2021}, Address = {Brno, Czech Republic}, Month = {August}, Year = {2021}, }
@inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, }