模型:

timm/resnext101_32x16d.fb_swsl_ig1b_ft_in1k

英文

resnext101_32x16d.fb_swsl_ig1b_ft_in1k 模型卡片

一个 ResNeXt-B 图像分类模型。

这个模型特点包括:

  • ReLU 激活
  • 单层 7x7 卷积和池化
  • 1x1 卷积捷径下采样
  • 带有分组的 3x3 瓶颈卷积

在 Instagram-1B 标签数据集上采用半弱监督学习预训练,并由论文作者在 ImageNet-1k 上进行微调。

模型细节

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('resnext101_32x16d.fb_swsl_ig1b_ft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnext101_32x16d.fb_swsl_ig1b_ft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 256, 56, 56])
    #  torch.Size([1, 512, 28, 28])
    #  torch.Size([1, 1024, 14, 14])
    #  torch.Size([1, 2048, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnext101_32x16d.fb_swsl_ig1b_ft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在 timm 中探索该模型的数据集和运行时指标 model results

model img_size top1 top5 param_count gmacs macts img/sec
12312321 320 86.72 98.17 93.6 35.2 69.7 451
12312321 288 86.51 98.08 93.6 28.5 56.4 560
12314321 288 86.49 98.03 93.6 28.5 56.4 557
12314321 224 85.96 97.82 93.6 17.2 34.2 923
12316321 224 85.11 97.44 468.5 87.3 91.1 254
12317321 416 85.0 97.12 191.9 108.4 213.8 134
12318321 352 84.96 97.22 102.1 50.2 101.2 291
12318321 320 84.73 97.18 102.1 41.5 83.7 353
12320321 384 84.71 96.99 164.0 77.6 154.7 183
12321321 288 84.57 97.08 93.6 28.5 56.4 557
12322321 320 84.45 97.08 93.2 31.5 67.8 446
12323321 352 84.43 96.97 129.9 51.1 105.5 280
12324321 288 84.36 96.92 93.6 27.6 53.0 595
12325321 320 84.35 97.04 66.8 24.1 47.7 610
12320321 288 84.3 96.94 164.0 43.7 87.1 333
12327321 224 84.28 97.17 88.8 16.5 31.2 1100
12317321 320 84.24 96.86 191.9 64.2 126.6 228
12329321 288 84.19 96.87 93.6 27.2 51.6 613
12330321 224 84.18 97.19 194.0 36.3 51.2 581
12331321 288 84.11 97.11 44.6 15.1 29.0 1144
12332321 320 83.97 96.82 64.7 31.2 67.3 518
12322321 256 83.87 96.75 93.2 20.2 43.4 692
12321321 224 83.86 96.65 93.6 17.2 34.2 923
12335321 320 83.72 96.61 86.6 24.3 48.1 617
12325321 256 83.69 96.78 66.8 15.4 30.6 943
12324321 224 83.68 96.61 93.6 16.7 32.0 986
12338321 320 83.67 96.74 60.2 24.1 47.7 706
12323321 256 83.59 96.61 129.9 27.1 55.8 526
12329321 224 83.58 96.4 93.6 16.5 31.2 1013
12331321 224 83.54 96.83 44.6 9.1 17.6 1864
12342321 288 83.46 96.54 60.2 19.1 37.3 904
12343321 224 83.35 96.85 194.0 36.3 51.2 582
12332321 256 83.23 96.53 64.7 20.0 43.1 809
12345321 224 83.22 96.75 44.2 8.0 21.2 1814
12346321 288 83.16 96.38 83.5 25.7 51.6 590
12338321 256 83.14 96.38 60.2 15.4 30.5 1096
12348321 320 83.02 96.45 44.6 16.5 34.8 992
12349321 288 82.98 96.54 44.6 13.4 28.2 1077
12350321 224 82.98 96.25 83.5 15.5 31.2 989
12335321 256 82.86 96.28 86.6 15.6 30.8 951
12352321 224 82.83 96.22 88.8 16.5 31.2 1099
12342321 224 82.8 96.13 60.2 11.6 22.6 1486
12354321 288 82.8 96.32 44.6 13.0 26.8 1291
12355321 288 82.74 95.71 60.2 19.1 37.3 905
12356321 224 82.69 96.63 88.8 16.5 31.2 1100
12357321 288 82.62 95.75 60.2 19.1 37.3 904
12358321 288 82.61 96.49 25.6 8.9 20.6 1729
12359321 288 82.53 96.13 36.8 9.9 21.5 1773
12360321 224 82.5 96.02 126.9 22.8 21.2 1078
12346321 224 82.46 95.92 83.5 15.5 31.2 987
12362321 288 82.36 96.18 35.7 8.1 20.9 1964
12363321 320 82.35 96.14 25.6 8.8 24.1 1386
12364321 288 82.31 95.63 44.6 13.0 26.8 1291
12365321 288 82.29 96.01 63.6 13.6 28.5 1078
12366321 224 82.29 96.0 60.2 11.6 22.6 1484
12367321 288 82.27 96.06 68.9 18.9 23.8 1176
12348321 256 82.26 96.07 44.6 10.6 22.2 1542
12369321 288 82.24 95.73 44.6 13.0 26.8 1290
12370321 288 82.2 96.14 27.6 7.0 23.8 1547
12349321 224 82.18 96.05 44.6 8.1 17.1 1771
12372321 224 82.17 96.22 25.0 4.3 14.4 2943
12373321 288 82.12 95.65 25.6 7.1 19.6 1704
12374321 288 82.03 95.94 25.0 7.0 23.8 1745
12375321 288 82.0 96.15 24.9 5.8 12.7 1787
12359321 256 81.99 95.85 36.8 7.8 17.0 2230
12352321 176 81.98 95.72 88.8 10.3 19.4 1768
12355321 224 81.97 95.24 60.2 11.6 22.6 1486
12354321 224 81.93 95.75 44.6 7.8 16.2 2122
12380321 224 81.9 95.77 44.6 7.8 16.2 2118
12381321 224 81.84 96.1 194.0 36.3 51.2 583
12362321 256 81.78 95.94 35.7 6.4 16.6 2471
12357321 224 81.77 95.22 60.2 11.6 22.6 1485
12358321 224 81.74 96.06 25.6 5.4 12.4 2813
12385321 288 81.65 95.54 25.6 7.1 19.6 1703
12386321 288 81.64 95.88 25.6 7.2 19.7 1694
12387321 224 81.62 96.04 88.8 16.5 31.2 1101
12388321 224 81.61 95.76 68.9 11.4 14.4 1930
12389321 288 81.61 95.83 25.6 8.5 19.2 1868
12364321 224 81.5 95.16 44.6 7.8 16.2 2125
12391321 288 81.48 95.16 25.0 7.0 23.8 1745
12392321 288 81.47 95.71 25.9 6.9 18.6 2071
12367321 224 81.45 95.53 68.9 11.4 14.4 1929
12394321 288 81.44 95.22 25.6 7.2 19.7 1908
12363321 256 81.44 95.67 25.6 5.6 15.4 2168
12396321 288 81.4 95.82 30.2 6.8 13.9 2132
12397321 288 81.37 95.74 25.6 7.2 19.7 1910
12369321 224 81.32 95.19 44.6 7.8 16.2 2125
12399321 288 81.3 95.65 28.1 6.8 18.4 1803
123100321 288 81.3 95.11 25.0 7.0 23.8 1746
12370321 224 81.27 95.62 27.6 4.3 14.4 2591
12373321 224 81.26 95.16 25.6 4.3 11.8 2823
123103321 288 81.23 95.54 15.7 4.8 19.6 2117
123104321 224 81.23 95.35 115.1 20.8 38.7 545
123105321 288 81.22 95.11 25.6 6.8 18.4 2089
123106321 288 81.22 95.63 25.6 6.8 18.4 676
123107321 288 81.18 95.09 25.6 7.2 19.7 1908
123108321 224 81.18 95.98 25.6 4.1 11.1 3455
123109321 224 81.17 95.34 25.0 4.3 14.4 2933
12374321 224 81.1 95.33 25.0 4.3 14.4 2934
123111321 288 81.1 95.23 28.1 6.8 18.4 1801
123112321 288 81.1 95.12 28.1 6.8 18.4 1799
123113321 224 81.02 95.41 60.3 12.9 25.0 1347
123114321 288 80.97 95.44 25.6 6.8 18.4 2085
12392321 256 80.94 95.45 25.9 5.4 14.7 2571
123116321 224 80.93 95.73 44.2 8.0 21.2 1814
123117321 288 80.91 95.55 25.6 6.8 18.4 2084
123118321 224 80.9 95.31 49.0 8.0 21.3 1585
123119321 224 80.9 95.3 88.2 15.5 31.2 918
123120321 288 80.86 95.52 25.6 6.8 18.4 2085
123121321 224 80.85 95.43 25.6 4.1 11.1 3450
12385321 224 80.84 95.02 25.6 4.3 11.8 2821
12375321 224 80.79 95.62 24.9 3.5 7.7 2961
123124321 288 80.79 95.36 19.8 6.0 14.8 2506
123125321 288 80.79 95.58 19.9 4.2 10.6 2349
123126321 288 80.78 94.99 25.6 6.8 18.4 2088
123127321 288 80.71 95.43 25.6 6.8 18.4 2087
123128321 288 80.7 95.39 25.0 7.0 23.8 1749
12365321 192 80.69 95.24 63.6 6.0 12.7 2270
12394321 224 80.68 94.71 25.6 4.4 11.9 3162
123131321 288 80.68 95.36 19.7 6.0 14.8 2637
123132321 224 80.67 95.3 25.6 4.1 11.1 3452
123133321 288 80.67 95.42 25.0 7.4 25.1 1626
12389321 224 80.63 95.21 25.6 5.2 11.6 3034
12386321 224 80.61 95.32 25.6 4.4 11.9 2813
123136321 224 80.61 94.99 83.5 15.5 31.2 989
123137321 288 80.6 95.31 19.9 6.0 14.8 2578
123103321 256 80.57 95.17 15.7 3.8 15.5 2710
123139321 224 80.56 95.0 60.2 11.6 22.6 1483
12397321 224 80.53 95.16 25.6 4.4 11.9 3164
12391321 224 80.53 94.46 25.0 4.3 14.4 2930
12360321 176 80.48 94.98 126.9 14.3 13.2 1719
123143321 224 80.47 95.2 60.2 11.8 23.4 1428
123144321 288 80.45 95.32 25.6 6.8 18.4 2086
12396321 224 80.45 95.24 30.2 4.1 8.4 3530
123100321 224 80.45 94.63 25.0 4.3 14.4 2936
12388321 176 80.43 95.09 68.9 7.3 9.0 3015
123148321 224 80.42 95.01 44.6 8.1 17.0 2007
123105321 224 80.38 94.6 25.6 4.1 11.1 3461
123124321 256 80.36 95.1 19.8 4.8 11.7 3267
123151321 224 80.34 94.93 44.2 8.0 21.2 1814
123152321 224 80.32 95.4 25.0 4.3 14.4 2941
123153321 224 80.28 95.16 44.7 9.2 18.6 1851
12399321 224 80.26 95.08 28.1 4.1 11.1 2972
123155321 288 80.24 95.24 25.6 8.5 19.9 1523
123107321 224 80.22 94.63 25.6 4.4 11.9 3162
12366321 176 80.2 94.64 60.2 7.2 14.0 2346
123111321 224 80.08 94.74 28.1 4.1 11.1 2969
123131321 256 80.08 94.97 19.7 4.8 11.7 3284
123137321 256 80.06 94.99 19.9 4.8 11.7 3216
123106321 224 80.06 94.95 25.6 4.1 11.1 1109
123112321 224 80.02 94.71 28.1 4.1 11.1 2962
123163321 288 79.97 95.05 25.6 6.8 18.4 2086
123164321 224 79.92 94.84 60.2 11.8 23.4 1455
123165321 224 79.91 94.82 27.6 4.3 14.4 2591
123114321 224 79.91 94.67 25.6 4.1 11.1 3456
12380321 176 79.9 94.6 44.6 4.9 10.1 3341
123168321 224 79.89 94.97 35.7 4.5 12.1 2774
123120321 224 79.88 94.87 25.6 4.1 11.1 3455
123170321 320 79.86 95.07 16.0 5.2 16.4 2168
123126321 224 79.85 94.56 25.6 4.1 11.1 3460
123172321 288 79.83 94.97 25.6 6.8 18.4 2087
123173321 224 79.82 94.62 44.6 7.8 16.2 2114
123128321 224 79.76 94.6 25.0 4.3 14.4 2943
123117321 224 79.74 94.95 25.6 4.1 11.1 3455
123125321 224 79.74 94.87 19.9 2.5 6.4 3929
123177321 288 79.71 94.83 19.7 6.0 14.8 2710
123178321 224 79.68 94.74 60.2 11.6 22.6 1486
123133321 224 79.67 94.87 25.0 4.5 15.2 2729
123180321 288 79.63 94.91 25.6 6.8 18.4 2086
123181321 224 79.56 94.72 25.6 4.3 11.8 2805
123182321 224 79.53 94.58 44.6 8.1 17.0 2062
123127321 224 79.52 94.61 25.6 4.1 11.1 3459
123121321 176 79.42 94.64 25.6 2.6 6.9 5397
123185321 288 79.4 94.66 18.0 5.9 14.6 2752
123144321 224 79.38 94.57 25.6 4.1 11.1 3459
123109321 176 79.37 94.3 25.0 2.7 9.0 4577
123188321 224 79.36 94.43 25.0 4.3 14.4 2942
123189321 224 79.31 94.52 88.8 16.5 31.2 1100
123190321 224 79.31 94.53 44.6 7.8 16.2 2125
123155321 224 79.31 94.63 25.6 5.2 12.0 2524
123132321 176 79.27 94.49 25.6 2.6 6.9 5404
123193321 224 79.25 94.31 25.0 4.3 14.4 2931
123194321 224 79.22 94.84 25.6 4.1 11.1 3451
123177321 256 79.21 94.56 19.7 4.8 11.7 3392
123196321 224 79.07 94.48 25.6 4.4 11.9 3162
123163321 224 79.03 94.38 25.6 4.1 11.1 3453
123198321 224 79.01 94.39 25.6 4.1 11.1 3461
123185321 256 79.01 94.37 18.0 4.6 11.6 3440
123170321 256 78.9 94.54 16.0 3.4 10.5 3421
123139321 160 78.89 94.11 60.2 5.9 11.5 2745
123202321 224 78.84 94.28 126.9 22.8 21.2 1079
123203321 288 78.83 94.24 16.8 4.5 16.8 2251
123172321 224 78.81 94.32 25.6 4.1 11.1 3454
123205321 288 78.74 94.33 16.8 4.5 16.7 2264
123206321 224 78.72 94.23 25.7 5.5 13.5 2796
123207321 224 78.71 94.24 25.6 4.4 11.9 3154
123208321 224 78.47 94.09 68.9 11.4 14.4 1934
123180321 224 78.46 94.27 25.6 4.1 11.1 3454
123210321 288 78.43 94.35 21.8 6.5 7.5 3291
123211321 288 78.42 94.04 10.5 3.1 13.3 3226
123212321 320 78.33 94.13 16.0 5.2 16.4 2391
123213321 224 78.32 94.04 60.2 11.6 22.6 1487
123214321 288 78.28 94.1 10.4 3.1 13.3 3062
123215321 256 78.25 94.1 10.7 2.5 12.5 3393
123216321 224 78.06 93.78 25.6 4.1 11.1 3450
123217321 224 78.0 93.99 25.6 4.4 11.9 3286
123218321 288 78.0 93.91 10.3 3.1 13.3 3297
123205321 224 77.98 93.75 16.8 2.7 10.1 3841
123220321 288 77.92 93.77 21.8 6.1 6.2 3609
123173321 160 77.88 93.71 44.6 4.0 8.3 3926
123212321 256 77.87 93.84 16.0 3.4 10.5 3772
123214321 256 77.86 93.79 10.4 2.4 10.5 4263
123168321 160 77.82 93.81 35.7 2.3 6.2 5238
123211321 256 77.81 93.82 10.5 2.4 10.5 4183
123181321 160 77.79 93.6 25.6 2.2 6.0 5329
123193321 160 77.73 93.32 25.0 2.2 7.4 5576
123228321 224 77.61 93.7 25.0 4.3 14.4 2944
123203321 224 77.59 93.61 16.8 2.7 10.2 3807
123230321 224 77.58 93.72 25.6 4.1 11.1 3455
123218321 256 77.44 93.56 10.3 2.4 10.5 4284
123232321 288 77.41 93.63 16.0 4.3 13.5 2907
123233321 224 77.38 93.54 44.6 7.8 16.2 2125
123207321 160 77.22 93.27 25.6 2.2 6.1 5982
123235321 288 77.17 93.47 10.3 3.1 13.3 3392
123236321 288 77.15 93.27 21.8 6.1 6.2 3615
123210321 224 77.1 93.37 21.8 3.9 4.5 5436
123238321 224 77.02 93.07 28.1 4.1 11.1 2952
123235321 256 76.78 93.13 10.3 2.4 10.5 4410
123232321 224 76.7 93.17 16.0 2.6 8.2 4859
123241321 288 76.5 93.35 21.8 6.1 6.2 3617
123220321 224 76.42 92.87 21.8 3.7 3.7 5984
123243321 288 76.35 93.18 16.0 3.9 12.2 3331
123244321 224 76.13 92.86 25.6 4.1 11.1 3457
123216321 160 75.96 92.5 25.6 2.1 5.7 6490
123236321 224 75.52 92.44 21.8 3.7 3.7 5991
123243321 224 75.3 92.58 16.0 2.4 7.4 5583
123241321 224 75.16 92.18 21.8 3.7 3.7 5994
123238321 160 75.1 92.08 28.1 2.1 5.7 5513
123250321 224 74.57 91.98 21.8 3.7 3.7 5984
123251321 288 73.81 91.83 11.7 3.4 5.4 5196
123252321 224 73.32 91.42 21.8 3.7 3.7 5979
123253321 224 73.28 91.73 11.7 1.8 2.5 10213
123254321 288 73.16 91.03 11.7 3.0 4.1 6050
123255321 224 72.98 91.11 21.8 3.7 3.7 5967
123256321 224 72.6 91.42 11.7 1.8 2.5 10213
123257321 288 72.37 90.59 11.7 3.0 4.1 6051
123258321 224 72.26 90.31 10.1 1.7 5.8 7026
123251321 224 72.26 90.68 11.7 2.1 3.3 8707
123254321 224 71.49 90.07 11.7 1.8 2.5 10187
123258321 176 71.31 89.69 10.1 1.1 3.6 10970
123262321 224 70.84 89.76 11.7 1.8 2.5 10210
123257321 224 70.64 89.47 11.7 1.8 2.5 10194
123255321 160 70.56 89.52 21.8 1.9 1.9 10737
123265321 224 69.76 89.07 11.7 1.8 2.5 10205
123266321 224 68.34 88.03 5.4 1.1 2.4 13079
123267321 224 68.25 88.17 11.7 1.8 2.5 10167
123266321 176 66.71 86.96 5.4 0.7 1.5 20327
123267321 160 65.66 86.26 11.7 0.9 1.3 18229

引用

@misc{yalniz2019billionscale,
    title={Billion-scale semi-supervised learning for image classification},
    author={I. Zeki Yalniz and Hervé Jégou and Kan Chen and Manohar Paluri and Dhruv Mahajan},
    year={2019},
    eprint={1905.00546},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
@article{Xie2016,
  title={Aggregated Residual Transformations for Deep Neural Networks},
  author={Saining Xie and Ross Girshick and Piotr Dollár and Zhuowen Tu and Kaiming He},
  journal={arXiv preprint arXiv:1611.05431},
  year={2016}
}
@article{He2015,
  author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
  title = {Deep Residual Learning for Image Recognition},
  journal = {arXiv preprint arXiv:1512.03385},
  year = {2015}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}