模型:
timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k
一个Swin Transformer图像分类模型。由论文作者在ImageNet-22k上进行预训练,并在ImageNet-1k上进行微调。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('swin_base_patch4_window7_224.ms_in22k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'swin_base_patch4_window7_224.ms_in22k_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for swin_base_patch4_window7_224 (NHWC output) # torch.Size([1, 56, 56, 128]) # torch.Size([1, 28, 28, 256]) # torch.Size([1, 14, 14, 512]) # torch.Size([1, 7, 7, 1024]) # e.g. for swinv2_cr_small_ns_224 (NCHW output) # torch.Size([1, 96, 56, 56]) # torch.Size([1, 192, 28, 28]) # torch.Size([1, 384, 14, 14]) # torch.Size([1, 768, 7, 7]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'swin_base_patch4_window7_224.ms_in22k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, H, W, num_features) tensor for swin / swinv2 # or (batch_size, num_features, H, W) for swinv2_cr output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor
在timm中探索该模型的数据集和运行时指标 model results 。
@inproceedings{liu2021Swin, title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, year={2021} }
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }