英文

tner/deberta-v3-large-btc

这个模型是在 tner/btc 数据集上对 microsoft/deberta-v3-large 进行微调得到的。模型的微调是通过 T-NER 的超参数搜索完成的(详细信息请参阅该存储库)。它在测试集上达到了以下结果:

  • F1值(微平均):0.8399238265934805
  • 准确率(微平均):0.8237749945067018
  • 召回率(微平均):0.8567184643510055
  • F1值(宏平均):0.7921150390682584
  • 准确率(宏平均):0.7766126681668878
  • 召回率(宏平均):0.8103758198218992

测试集上的每个实体的F1分数如下:

  • 地点(location):0.7503949447077408
  • 组织(organization):0.7042372881355932
  • 人物(person):0.9217128843614413

对于F1分数,通过bootstrap方法获取置信区间,结果如下:

  • F1值(微平均):
    • 90%置信区间:[0.8283024935970381, 0.8507400882379221]
    • 95%置信区间:[0.8260021524132041, 0.8526162579659953]
  • F1值(宏平均):
    • 90%置信区间:[0.8283024935970381, 0.8507400882379221]
    • 95%置信区间:[0.8260021524132041, 0.8526162579659953]

完整的评估结果可以在 metric file of NER metric file of entity span 找到。

用法

可以通过 tner library 来使用该模型。通过pip安装该库

pip install tner

并按下面的代码激活模型。

from tner import TransformersNER
model = TransformersNER("tner/deberta-v3-large-btc")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])

可以通过transformers库使用它,但目前不建议使用,因为不支持CRF层。

训练超参数

训练过程中使用了以下超参数:

  • 数据集:['tner/btc']
  • 数据集拆分:train
  • 数据集名称:无
  • 本地数据集:无
  • 模型:microsoft/deberta-v3-large
  • CRF层:True
  • 最大长度:128
  • 迭代轮数:15
  • 批次大小:16
  • 学习率:1e-05
  • 随机种子:42
  • 梯度累积步数:8
  • 权重衰减:无
  • 学习率预热步数比率:0.1
  • 最大梯度范数:无

完整的配置可以在 fine-tuning parameter file 找到。

参考文献

如果您使用了T-NER的任何资源,请考虑引用我们的 paper

@inproceedings{ushio-camacho-collados-2021-ner,
    title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
    author = "Ushio, Asahi  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-demos.7",
    doi = "10.18653/v1/2021.eacl-demos.7",
    pages = "53--62",
    abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}