英文

tner/roberta-large-btc

此模型是基于数据集 tner/btc 上的模型 roberta-large 进行微调的。模型微调是通过 T-NER 的超参数搜索进行的(有关更多详细信息,请参见存储库)。它在测试集上实现以下结果:

  • F1(微平均):0.8367557645979121
  • 精确度(微平均):0.8401290025339784
  • 召回率(微平均):0.8334095063985375
  • F1(宏平均):0.7830389304099722
  • 精确度(宏平均):0.7911560677795398
  • 召回率(宏平均):0.7756024849498971

测试集上F1分数的每个实体的详细分解如下:

  • 位置:0.736756316218419
  • 组织:0.6927985414767548
  • 人物:0.9195619335347431

对于F1分数,通过bootstrap获得置信区间如下:

  • F1(微平均):
    • 90%:[0.8263755823738717, 0.8472678708881698]
    • 95%:[0.8238362631404713, 0.8498613485265176]
  • F1(宏平均):
    • 90%:[0.8263755823738717, 0.8472678708881698]
    • 95%:[0.8238362631404713, 0.8498613485265176]

完整的评估结果可以在 metric file of NER metric file of entity span 中找到。

使用方法

可以通过 tner library 使用此模型。通过pip安装库

pip install tner

并按以下方式激活模型。

from tner import TransformersNER
model = TransformersNER("tner/roberta-large-btc")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])

可以通过transformers库使用它,但目前不推荐,因为不支持CRF层。

训练超参数

训练过程中使用了以下超参数:

  • 数据集:['tner/btc']
  • 数据集拆分:train
  • 数据集名称:None
  • 本地数据集:None
  • 模型:roberta-large
  • crf:True
  • 最大长度:128
  • epoch:15
  • 批量大小:64
  • lr:1e-05
  • 随机种子:42
  • 梯度积累步数:2
  • 权重衰减:1e-07
  • lr_warmup_step_ratio:0.1
  • 最大梯度范数:None

完整配置可以在 fine-tuning parameter file 中找到。

参考

如果您使用了T-NER的任何资源,请考虑引用我们的 paper

@inproceedings{ushio-camacho-collados-2021-ner,
    title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
    author = "Ushio, Asahi  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-demos.7",
    doi = "10.18653/v1/2021.eacl-demos.7",
    pages = "53--62",
    abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}