英文

tner/roberta-large-fin

该模型是在 tner/fin 数据集上 roberta-large 的微调版本。通过 T-NER 的超参数搜索进行模型微调(请参阅存储库了解更多详细信息)。它在测试集上实现了以下结果:

  • F1(微观):0.6988727858293075
  • 精确度(微观):0.7161716171617162
  • 召回率(微观):0.6823899371069182
  • F1(宏观):0.45636958249281745
  • 精确度(宏观):0.4519134760270864
  • 召回率(宏观):0.4705942205942206

测试集上F1分数的实体分级如下:

  • 位置:0.5121951219512196
  • 组织机构:0.49624060150375937
  • 其他:0.0
  • 个人:0.8170426065162907

对于F1得分,使用自助法获得置信区间,如下所示:

  • F1(微观):
    • 90%:[0.6355508274231678, 0.7613829748047737]
    • 95%:[0.624150263185174, 0.7724430709173716]
  • F1(宏观):
    • 90%:[0.6355508274231678, 0.7613829748047737]
    • 95%:[0.624150263185174, 0.7724430709173716]

完整的评估结果可以在 metric file of NER metric file of entity span 找到。

使用

可以通过 tner library 来使用此模型。通过pip安装库

pip install tner

并按如下方式激活模型。

from tner import TransformersNER
model = TransformersNER("tner/roberta-large-fin")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])

可以通过transformers库使用它,但是目前不支持CRF层,因此不建议使用。

训练超参数

训练过程中使用了以下超参数:

  • 数据集:['tner/fin']
  • 数据集拆分:train
  • 数据集名称:None
  • 本地数据集:None
  • 模型:roberta-large
  • crf:True
  • 最大长度:128
  • epoch:15
  • 批量大小:64
  • lr:1e-05
  • 随机种子:42
  • 梯度累积步数:1
  • 权重衰减:None
  • lr_warmup_step_ratio:0.1
  • 最大梯度规范:10.0

完整的配置可以在 fine-tuning parameter file 找到。

参考

如果你使用了T-NER的任何资源,请考虑引用我们的 paper

@inproceedings{ushio-camacho-collados-2021-ner,
    title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
    author = "Ushio, Asahi  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-demos.7",
    doi = "10.18653/v1/2021.eacl-demos.7",
    pages = "53--62",
    abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}