英文

tner/roberta-large-mit-restaurant

该模型是在 roberta-large 数据集上通过 T-NER 的超参数搜索进行微调的版本。模型在测试集上取得了以下结果:

  • F1(微平均):0.8164676304211189
  • Precision(微平均):0.8085901027077498
  • Recall(微平均):0.8245001586797842
  • F1(宏平均):0.8081522050756316
  • Precision(宏平均):0.7974927131040113
  • Recall(宏平均):0.8199029986502094

测试集中F1得分的实体细分如下:

  • amenity:0.7140221402214022
  • cuisine:0.8558052434456929
  • dish:0.829103214890017
  • location:0.8611793611793611
  • money:0.8579710144927537
  • rating:0.8
  • restaurant:0.8713375796178344
  • time:0.6757990867579908

F1得分的置信区间通过自助法获得:

  • F1(微平均):
    • 90%:[0.8050039870241192, 0.8289531287254172]
    • 95%:[0.8030897272187587, 0.8312785732455824]
  • F1(宏平均):
    • 90%:[0.8050039870241192, 0.8289531287254172]
    • 95%:[0.8030897272187587, 0.8312785732455824]

完整的评估结果可以在 metric file of NER metric file of entity span 中找到。

用法

可以通过 tner library 库使用该模型。通过pip安装库:

pip install tner

并按照以下方式激活模型。

from tner import TransformersNER
model = TransformersNER("tner/roberta-large-mit-restaurant")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])

也可以使用transformers库,但是目前不建议使用,因为不支持CRF层。

训练超参数

训练过程中使用了以下超参数:

  • 数据集:['tner/mit_restaurant']
  • 数据集拆分:train
  • 数据集名称:None
  • 本地数据集:None
  • 模型:roberta-large
  • CRF:True
  • 最大长度:128
  • epoch:15
  • 批量大小:64
  • 学习率:1e-05
  • 随机种子:42
  • 梯度累积步数:1
  • 权重衰减:None
  • 学习率预热步数比例:0.1
  • 最大梯度范数:10.0

完整配置可以在 fine-tuning parameter file 中找到。

参考文献

如果您使用了T-NER的任何资源,请考虑引用我们的 paper

@inproceedings{ushio-camacho-collados-2021-ner,
    title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
    author = "Ushio, Asahi  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-demos.7",
    doi = "10.18653/v1/2021.eacl-demos.7",
    pages = "53--62",
    abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}