模型:
tner/roberta-large-tweetner7-all
任务:
标记分类该模型是在数据集(train_all分割)上对模型 roberta-large 进行微调的结果。模型的微调是通过进行 T-NER 的超参数搜索完成的(有关更多细节,请参见存储库)。它在2021年的测试集上实现了以下结果:
测试集中F1得分的每个实体的详细情况如下:
F1分数的置信区间通过自举得到:
完整的评估结果可以在 metric file of NER 和 metric file of entity span 找到。
该模型可以通过 tner library 使用。通过pip安装该库。
pip install tner
对预处理的推文进行处理,其中账户名和URL被转换为特殊格式(有关更多详细信息,请参见数据集页面),因此我们根据此进行推文处理,然后进行模型预测,如下所示。
import re from urlextract import URLExtract from tner import TransformersNER extractor = URLExtract() def format_tweet(tweet): # mask web urls urls = extractor.find_urls(tweet) for url in urls: tweet = tweet.replace(url, "{{URL}}") # format twitter account tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet) return tweet text = "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek" text_format = format_tweet(text) model = TransformersNER("tner/roberta-large-tweetner7-all") model.predict([text_format])
可以通过transformers库使用它,但目前不推荐使用,因为不支持CRF层。
训练过程中使用了以下超参数:
完整的配置可以在 fine-tuning parameter file 找到。
如果您使用了该模型,请引用T-NER论文和TweetNER7论文。
@inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", }
@inproceedings{ushio-etal-2022-tweet, title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts", author = "Ushio, Asahi and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco. and Camacho-Collados, Jose", booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing", month = nov, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", }