(日本語の固有表現抽出のモデル)
这个模型是 xlm-roberta-base (预训练跨语言 RoBERTa 模型)经过微调后用于命名实体识别(NER)标记分类。
该模型是在 Stockmark 公司提供的 NER 数据集上进行微调的,其中数据是从日本维基百科文章中收集的。有关该数据集的许可,请参阅 here 。
每个标记都被标记为:
Label id | Tag | Tag in Widget | Description |
---|---|---|---|
0 | O | (None) | others or nothing |
1 | PER | PER | person |
2 | ORG | ORG | general corporation organization |
3 | ORG-P | P | political organization |
4 | ORG-O | O | other organization |
5 | LOC | LOC | location |
6 | INS | INS | institution, facility |
7 | PRD | PRD | product |
8 | EVT | EVT | event |
from transformers import pipeline model_name = "tsmatz/xlm-roberta-ner-japanese" classifier = pipeline("token-classification", model=model_name) result = classifier("鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った") print(result)
您可以从 here 下载用于微调的源代码。
训练过程中使用了以下超参数:
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 446 | 0.1510 | 0.8457 |
No log | 2.0 | 892 | 0.0626 | 0.9261 |
No log | 3.0 | 1338 | 0.0366 | 0.9580 |
No log | 4.0 | 1784 | 0.0196 | 0.9792 |
No log | 5.0 | 2230 | 0.0173 | 0.9864 |