模型:
uaritm/multilingual_en_uk_pl_ru
这是一个 sentence-transformers 模型:它将句子和段落映射到一个768维的稠密向量空间,可用于聚类或语义搜索等任务。
该模型用于对患者投诉的多语言分析资源,以确定需要哪种类型的医生专长: Virtual General Practice
您可以测试模型的质量和速度
该模型是模型 uaritm/multilingual_en_ru_uk 的更新版本
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
pip install -U sentence-transformers
Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings)
如果没有 sentence-transformers ,您可以按照以下方式使用该模型:首先,将输入传递到变换器模型中,然后必须在上下文化的词嵌入之上应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
要进行此模型的自动评估,请参阅句子嵌入基准: https://seb.sbert.net
该模型的训练参数如下:
数据加载器:
torch.utils.data.dataloader.DataLoader(长度为50184,参数为:)
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失:
sentence_transformers.losses.MSELoss.MSELoss
fit() 方法的参数:
{ "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 }
SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )
@misc{Uaritm, title={sentence-transformers: Semantic similarity of medical texts}, author={Vitaliy Ostashko}, year={2023}, url={https://aihealth.site}, }