模型:
uer/bart-chinese-6-960-cluecorpussmall
这个模型是由 UER-py 进行预训练的。
您可以直接使用此模型的管道进行文本生成:
>>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/bart-chinese-6-960-cluecorpussmall") >>> model = BartForConditionalGeneration.from_pretrained("uer/bart-chinese-6-960-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("中国的首都是[MASK]京", max_length=50, do_sample=False) [{'generated_text': '中 国 的 首 都 是 北 京'}]
CLUECorpusSmall 使用了Common Crawl和一些短消息作为训练数据。
模型是由 UER-py 在 Tencent Cloud 上进行预训练的。我们使用512的序列长度进行了1000000步的预训练。
我们将预训练模型转换为Huggingface的格式:
python3 scripts/convert_bart_from_uer_to_huggingface.py --input_model_path cluecorpussmall_bart_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 6
@article{lewis2019bart, title={Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension}, author={Lewis, Mike and Liu, Yinhan and Goyal, Naman and Ghazvininejad, Marjan and Mohamed, Abdelrahman and Levy, Omer and Stoyanov, Ves and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:1910.13461}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }