模型:
uer/bart-large-chinese-cluecorpussmall
这个模型是由 UER-py 进行预训练的,该模型在 this paper 中进行了介绍。
你可以从 UER-py Modelzoo page 中下载一套中文BART模型,也可以通过以下链接从HuggingFace上下载:
Link | |
---|---|
BART-Base | 1238321 |
BART-Large | 1239321 |
您可以使用此模型直接进行文本生成的管道化处理(以BART-Base为例):
>>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/bart-base-chinese-cluecorpussmall") >>> model = BartForConditionalGeneration.from_pretrained("uer/bart-base-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("中国的首都是[MASK]京", max_length=50, do_sample=False) [{'generated_text': '中 国 的 首 都 是 北 京'}]
训练数据来自 CLUECorpusSmall 。
模型在 Tencent Cloud 上由 UER-py 进行预训练。我们使用512的序列长度进行了1000000步的预训练。以BART-Base为例
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_bart_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --data_processor bart
python3 pretrain.py --dataset_path cluecorpussmall_bart_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bart/base_config.json \ --output_model_path models/cluecorpussmall_bart_base_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 5e-5 --batch_size 8 \ --span_masking --span_max_length 3
最后,我们将预训练的模型转换为Huggingface的格式:
python3 scripts/convert_bart_from_uer_to_huggingface.py --input_model_path cluecorpussmall_bart_base_seq512_model.bin-1000000 \ --output_model_path pytorch_model.bin \ --layers_num 6
@article{lewis2019bart, title={Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension}, author={Lewis, Mike and Liu, Yinhan and Goyal, Naman and Ghazvininejad, Marjan and Mohamed, Abdelrahman and Levy, Omer and Stoyanov, Ves and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:1910.13461}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }