这是由 UER-py 进行预训练的一组中文 RoBERTa 模型,该模型在 this paper 中介绍。
Turc et al. 表明标准的 BERT 方法在各种模型大小上都很有效。根据他们的论文,我们发布了24个中文 RoBERTa 模型。为了方便用户重现结果,我们使用公开可用的语料库并提供了所有训练细节。
您可以从以下链接中下载24个中文 RoBERTa 迷你模型:
H=128 | H=256 | H=512 | H=768 | |
---|---|---|---|---|
L=2 | 12313321 | 12314321 | 12315321 | 12316321 |
L=4 | 12317321 | 12318321 | 12319321 | 12320321 |
L=6 | 12321321 | 12322321 | 12323321 | 12324321 |
L=8 | 12325321 | 12326321 | 12327321 | 12328321 |
L=10 | 12329321 | 12330321 | 12331321 | 12332321 |
L=12 | 12333321 | 12334321 | 12335321 | 12336321 |
下面是六个中文任务的开发集得分:
Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) |
---|---|---|---|---|---|---|---|
RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 |
RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 |
RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 |
RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 |
RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 |
对于每个任务,我们从下面的列表中选择了最佳的微调超参数,并使用序列长度为128进行训练:
您可以直接使用 masked language modeling 的管道来使用此模型(以 RoBERTa-Medium 为例):
>>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ]
以下是如何在 PyTorch 中使用此模型获取给定文本的特征:
from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input)
以及在 TensorFlow 中的使用方法:
from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input)
我们使用 CLUECorpusSmall 作为训练数据。我们发现在 CLUECorpusSmall 上预训练的模型优于在 CLUECorpus2020 上预训练的模型,尽管 CLUECorpus2020 比 CLUECorpusSmall 大得多。
这些模型是由 UER-py 在 Tencent Cloud 上进行预训练的。我们使用序列长度为128进行100万步的预训练,然后使用序列长度为512进行额外的25万步预训练。对于不同的模型大小,我们使用相同的超参数。
以 RoBERTa-Medium 为例:
第一阶段:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm
python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm
第二阶段:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm
python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm
最后,我们将预训练的模型转换为 Huggingface 的格式:
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm
@article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }