该模型用于生成中文文本。您可以从 GPT2-Chinese Github page 下载模型,或者通过 HuggingFace 的链接 gpt2-chinese-cluecorpussmall 下载模型。
您可以直接使用文本生成的管道来使用该模型:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-cluecorpussmall") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-cluecorpussmall") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True) [{'generated_text': '这是很久之前的事情了 , 我 曾 经 把 这 个 当 做 一 种 思 想 的 传 承 , 或 者 是 人 生 的 回 顾 , 当 时 我 们 是 一 个 刚 刚 加 入 的 时 候 就 想 要 加 入 他 们 , 于 是 我 们 每 天 看 到 他 们 , 加 上 他 们 的 各 种 不 可 思 议 的 行 为 , 直 到 现 在 , 我 们 的 人 生 才 完 整 起 来 。'}]
训练数据使用 CLUECorpusSmall 。
该模型是由 UER-py 在 Tencent Cloud 上进行预训练的。我们先使用 128 的序列长度进行 1000000 步的预训练,然后使用 1024 的序列长度进行额外的 250000 步的预训练。
阶段1:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_lm_seq128_dataset.pt \ --seq_length 128 --processes_num 32 --data_processor lm
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/gpt2/config.json \ --output_model_path models/cluecorpussmall_gpt2_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64
阶段2:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \ --seq_length 1024 --processes_num 32 --data_processor lm
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_gpt2_seq128_model.bin-1000000 \ --config_path models/gpt2/config.json \ --output_model_path models/cluecorpussmall_gpt2_seq1024_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16
最后,我们将预训练的模型转化为 Huggingface 的格式:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path cluecorpussmall_gpt2_seq1024_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 12
@article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }