模型:
uer/gpt2-chinese-lyric
这个模型用来生成中文歌词。您可以通过链接 GPT2-Chinese Github page 从 gpt2-chinese-lyric 下载模型,或者通过 HuggingFace 下载模型。
您可以直接使用文本生成的流程来使用该模型:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-lyric") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-lyric") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("最美的不是下雨天,是曾与你躲过雨的屋檐", max_length=100, do_sample=True) [{'generated_text': '最美的不是下雨天,是曾与你躲过雨的屋檐 , 下 课 铃 声 响 起 的 瞬 间 , 我 们 的 笑 脸 , 有 太 多 回 忆 在 浮 现 , 是 你 总 在 我 身 边 , 不 知 道 会 不 会 再 见 , 从 现 在 开 始 到 永 远 , 想 说 的 语 言 凝 结 成 一 句 , 不 管 我 们 是 否 能 够 兑 现 , 想 说 的 语 言 凝 结'}]
训练数据包含由 Chinese-Lyric-Corpus 和 MusicLyricChatbot 收集的 15 万条中文歌词。
该模型是由 UER-py 在 Tencent Cloud 上进行预训练的。我们在基于预训练模型 gpt2-base-chinese-cluecorpussmall 的基础上进行了 10 万步数、序列长度为 512 的预训练。
python3 preprocess.py --corpus_path corpora/lyric.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path lyric_dataset.pt --processes_num 32 \ --seq_length 512 --data_processor lm
python3 pretrain.py --dataset_path lyric_dataset.pt \ --pretrained_model_path models/cluecorpussmall_gpt2_seq1024_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --config_path models/gpt2/config.json \ --output_model_path models/lyric_gpt2_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 100000 --save_checkpoint_steps 10000 --report_steps 5000 \ --learning_rate 5e-5 --batch_size 64
最后,我们将预训练模型转化为 Huggingface 的格式:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path lyric_gpt2_model.bin-100000 \ --output_model_path pytorch_model.bin \ --layers_num 12
@article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }