模型:
uer/gpt2-chinese-poem
该模型用于生成中国古代诗歌。您可以从 GPT2-Chinese Github page 下载模型,或通过链接 gpt2-chinese-poem 从HuggingFace获取模型。
由于在pipelines.py中使用了参数skip_special_tokens,默认会删除特殊标记如[SEP]、[UNK],因此托管推理API(右侧)的输出结果可能无法正确显示。
您可以直接使用文本生成pipeline来使用模型:
当参数skip_special_tokens为True时:
>>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]梅 山 如 积 翠 ,", max_length=50, do_sample=True) [{'generated_text': '[CLS]梅 山 如 积 翠 , 丛 竹 隠 疏 花 。 水 影 落 寒 濑 , 竹 声 随 暮 鸦 。 茅 茨 数 间 屋 , 烟 火 两 三 家 。 安 得 携 琴 酒 , 相 逢 烟 雨 赊 。 向 湖 边 过 , 偏 怜 雪 里 看 。 浮 峦 如 画 出 , 远 树 与 天 连 。 月 上 僧 房 静 , 风 回 萤 火 寒 。 幽 情 何 可 写 , 赖 有 子 期 弹 。 棠 真'}]
当参数skip_special_tokens为False时:
>>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]梅 山 如 积 翠 ,", max_length=100, do_sample=True) [{'generated_text': '[CLS]梅 山 如 积 翠 , 秀 出 何 其 雄 。 矫 矫 云 间 质 , 映 日 生 玲 珑 。 根 大 乱 石 结 , 枝 高 青 云 蒙 。 常 因 风 露 晚 , 隠 映 瑶 台 中 。 忽 闻 山 石 裂 , 万 里 吹 天 风 。 又 觉 此 身 高 , 迥 出 凡 境 空 。 清 影 落 潭 水 , 暗 香 来 逈 峰 。 却 寻 白 太 白 , 月 影 摇 江 东 。 [SEP] 而 非'}]
训练数据包含由 chinese-poetry 和 Poetry 项目收集的80万首中国古代诗歌。
该模型由 UER-py 在 Tencent Cloud 上进行预训练。我们使用序列长度为128进行了20万个步骤的预训练。我们使用扩展词汇表来处理未登录词。在诗歌语料库中出现次数大于或等于100的汉字被添加到词汇表中。
python3 preprocess.py --corpus_path corpora/poem.txt \ --vocab_path models/poem_zh_vocab.txt \ --dataset_path poem_dataset.pt --processes_num 16 \ --seq_length 128 --data_processor lm
python3 pretrain.py --dataset_path poem_dataset.pt \ --vocab_path models/poem_zh_vocab.txt \ --config_path models/gpt2/config.json \ --output_model_path models/poem_gpt2_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 200000 --save_checkpoint_steps 50000 --report_steps 1000 \ --learning_rate 5e-4 --batch_size 64
最后,我们将预训练模型转换为Huggingface的格式:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path poem_gpt2_model.bin-200000 \ --output_model_path pytorch_model.bin \ --layers_num 12
@article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }