模型:
uer/roberta-base-finetuned-cluener2020-chinese
该模型用于命名实体识别。您可以从 UER-py Modelzoo page (UER-py格式)下载模型,或者从链接 roberta-base-finetuned-cluener2020-chinese 通过HuggingFace下载。
您可以直接在令牌分类的流水线中使用此模型:
>>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline >>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') >>> ner = pipeline('ner', model=model, tokenizer=tokenizer) >>> ner("江苏警方通报特斯拉冲进店铺") [ {'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1}, {'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2}, {'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7}, {'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8}, {'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9} ]
训练数据使用 CLUENER2020 。我们仅使用数据集的训练集。
通过 UER-py 在 Tencent Cloud 上对模型进行微调。我们在基于预训练模型 chinese_roberta_L-12_H-768 的基础上,进行了五个时序长度为512的微调周期。在每个周期结束时,当在开发集上达到最佳性能时,保存模型。
python3 run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/cluener2020/train.tsv \ --dev_path datasets/cluener2020/dev.tsv \ --label2id_path datasets/cluener2020/label2id.json \ --output_model_path models/cluener2020_ner_model.bin \ --learning_rate 3e-5 --epochs_num 5 --batch_size 32 --seq_length 512
最后,我们将预训练模型转换为Huggingface的格式:
python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_ner_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12
@article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{xu2020cluener2020, title={CLUENER2020: Fine-grained Name Entity Recognition for Chinese}, author={Xu, Liang and Dong, Qianqian and Yu, Cong and Tian, Yin and Liu, Weitang and Li, Lu and Zhang, Xuanwei}, journal={arXiv preprint arXiv:2001.04351}, year={2020} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }