这是由 UER-py 进行微调的5个中文RoBERTa-Base分类模型集合。您可以从 UER-py Modelzoo page (以UER-py格式)或通过以下链接从HuggingFace下载这5个中文RoBERTa-Base分类模型:
Dataset | Link |
---|---|
JD full | 1236321 |
JD binary | 1237321 |
Dianping | 1238321 |
Ifeng | 1239321 |
Chinanews | 12310321 |
您可以直接使用文本分类管道来使用此模型(以roberta-base-finetuned-chinanews-chinese为例):
>>> from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline >>> model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> text_classification = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) >>> text_classification("北京上个月召开了两会") [{'label': 'mainland China politics', 'score': 0.7211663722991943}]
使用了5个中文文本分类数据集。JD full,JD binary和Dianping数据集包含不同情感极性的用户评论。Ifeng和Chinanews数据集则包含不同主题类别的新闻文章的首段。这些数据集由 Glyph 项目收集,并在相应的 paper 中讨论了更多细节。
UER-py 在 Tencent Cloud 上对模型进行微调。我们基于预训练模型 chinese_roberta_L-12_H-768 ,在序列长度为512的基础上进行了三次epoch的微调。在每个epoch结束时,当在开发集上取得最佳性能时,保存该模型。我们在不同模型上使用相同的超参数。
以roberta-base-finetuned-chinanews-chinese为例,
python3 run_classifier.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/glyph/chinanews/train.tsv \ --dev_path datasets/glyph/chinanews/dev.tsv \ --output_model_path models/chinanews_classifier_model.bin \ --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512
最后,我们将预训练模型转换为HuggingFace格式:
python3 scripts/convert_bert_text_classification_from_uer_to_huggingface.py --input_model_path models/chinanews_classifier_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12
@article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{zhang2017encoding, title={Which encoding is the best for text classification in chinese, english, japanese and korean?}, author={Zhang, Xiang and LeCun, Yann}, journal={arXiv preprint arXiv:1708.02657}, year={2017} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }