模型:

uer/roberta-base-word-chinese-cluecorpussmall

英文

中文词汇基础的 RoBERTa 迷你版

模型描述

这是由 UER-py 预训练的一组 5 个中文词汇基于 RoBERTa 模型,该模型在 this paper 中有详细介绍。

大多数中文预训练模型是基于中文字符的。与基于字符的模型相比,基于词汇的模型在实验结果中表现更好,并且速度更快(因为序列长度更短)。为此,我们发布了不同大小的 5 个中文词汇基于 RoBERTa 模型。为了方便用户复现结果,我们使用了公开可用的语料库和词汇分割工具,并提供了所有的训练细节。

请注意,托管推理 API 的输出结果(右侧)显示不正确。当预测的词汇有多个字符时,只显示该词汇而不是整个句子。您可以点击“ JSON 输出”获取正常的输出结果。

您可以从以下链接下载 5 个中文 RoBERTa 迷你版模型:

Link
word-based RoBERTa-Tiny 12313321
word-based RoBERTa-Mini 12314321
word-based RoBERTa-Small 12315321
word-based RoBERTa-Medium 12316321
word-based RoBERTa-Base 12317321

char-based models 相比,基于词汇的模型在大多数情况下都取得了更好的结果。以下是六个中文任务开发集上的得分:

Model Score book_review chnsenticorp lcqmc tnews(CLUE) iflytek(CLUE) ocnli(CLUE)
RoBERTa-Tiny(char) 72.3 83.4 91.4 81.8 62.0 55.0 60.3
RoBERTa-Tiny(word) 74.4(+2.1) 86.7 93.2 82.0 66.4 58.2 59.6
RoBERTa-Mini(char) 75.9 85.7 93.7 86.1 63.9 58.3 67.4
RoBERTa-Mini(word) 76.9(+1.0) 88.5 94.1 85.4 66.9 59.2 67.3
RoBERTa-Small(char) 76.9 87.5 93.4 86.5 65.1 59.4 69.7
RoBERTa-Small(word) 78.4(+1.5) 89.7 94.7 87.4 67.6 60.9 69.8
RoBERTa-Medium(char) 78.0 88.7 94.8 88.1 65.6 59.5 71.2
RoBERTa-Medium(word) 79.1(+1.1) 90.0 95.1 88.0 67.8 60.6 73.0
RoBERTa-Base(char) 79.7 90.1 95.2 89.2 67.0 60.9 75.5
RoBERTa-Base(word) 80.4(+0.7) 91.1 95.7 89.4 68.0 61.5 76.8

对于每个任务,我们从以下列表中选择了最佳的微调超参数,并使用序列长度为 128 进行训练:

  • epochs: 3, 5, 8
  • batch sizes: 32, 64
  • learning rates: 3e-5, 1e-4, 3e-4

如何使用

您可以通过使用遮蔽语言建模的流程直接使用此模型(以基于词汇的 RoBERTa-Medium 为例):

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uer/roberta-medium-word-chinese-cluecorpussmall')
>>> unmasker("[MASK]的首都是北京。")
[
    {'sequence': '中国 的首都是北京。',
     'score': 0.21525809168815613, 
     'token': 2873, 
     'token_str': '中国'}, 
    {'sequence': '北京 的首都是北京。', 
     'score': 0.15194718539714813, 
     'token': 9502, 
     'token_str': '北京'}, 
    {'sequence': '我们 的首都是北京。', 
     'score': 0.08854265511035919, 
     'token': 4215, 
     'token_str': '我们'},
    {'sequence': '美国 的首都是北京。', 
     'score': 0.06808705627918243, 
     'token': 7810, 
     'token_str': '美国'}, 
    {'sequence': '日本 的首都是北京。', 
     'score': 0.06071401759982109, 
     'token': 7788, 
     'token_str': '日本'}
]

以下是在 PyTorch 中获取给定文本特征的使用示例:

from transformers import AlbertTokenizer, BertModel
tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall')
model = BertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

以及在 TensorFlow 中的示例:

from transformers import AlbertTokenizer, TFBertModel
tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall')
model = TFBertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

由于 BertTokenizer 不支持 sentencepiece,因此在此处使用 AlbertTokenizer。

训练数据

我们使用 CLUECorpusSmall 作为训练数据。谷歌的 sentencepiece 用于词汇分割。句子片段模型是在 CLUECorpusSmall 语料库上训练的:

>>> import sentencepiece as spm
>>> spm.SentencePieceTrainer.train(input='cluecorpussmall.txt',
             model_prefix='cluecorpussmall_spm',
             vocab_size=100000,
             max_sentence_length=1024,
             max_sentencepiece_length=6,
             user_defined_symbols=['[MASK]','[unused1]','[unused2]',
                '[unused3]','[unused4]','[unused5]','[unused6]',
                '[unused7]','[unused8]','[unused9]','[unused10]'],
             pad_id=0,
             pad_piece='[PAD]',
             unk_id=1,
             unk_piece='[UNK]',
             bos_id=2,
             bos_piece='[CLS]',
             eos_id=3,
             eos_piece='[SEP]',
             train_extremely_large_corpus=True
            )

训练过程

模型由 UER-py Tencent Cloud 上进行预训练。我们首先使用序列长度为 128 进行了 1,000,000 步的预训练,然后再使用序列长度为 512 进行了额外的 250,000 步的预训练。我们在不同的模型大小上使用了相同的超参数。

以基于词汇的 RoBERTa-Medium 为例:

阶段1:

python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --spm_model_path models/cluecorpussmall_spm.model \
                      --dataset_path cluecorpussmall_word_seq128_dataset.pt \
                      --processes_num 32 --seq_length 128 \
                      --dynamic_masking --data_processor mlm
python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \
                    --spm_model_path models/cluecorpussmall_spm.model \
                    --config_path models/bert/medium_config.json \
                    --output_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 1e-4 --batch_size 64 \
                    --data_processor mlm --target mlm

阶段2:

python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --spm_model_path models/cluecorpussmall_spm.model \
                      --dataset_path cluecorpussmall_word_seq512_dataset.pt \
                      --processes_num 32 --seq_length 512 \
                      --dynamic_masking --data_processor mlm
python3 pretrain.py --dataset_path cluecorpussmall_word_seq512_dataset.pt \
                    --spm_model_path models/cluecorpussmall_spm.model \
                    --pretrained_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-1000000 \
                    --config_path models/bert/medium_config.json \
                    --output_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
                    --learning_rate 5e-5 --batch_size 16 \
                    --data_processor mlm --target mlm

最后,我们将预训练模型转换为 Huggingface 的格式:

python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-250000 \
                                                        --output_model_path pytorch_model.bin \
                                                        --layers_num 8 --type mlm

BibTeX 条目和引用信息

@article{devlin2018bert,
  title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
  author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
  journal={arXiv preprint arXiv:1810.04805},
  year={2018}
}

@article{turc2019,
  title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models},
  author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
  journal={arXiv preprint arXiv:1908.08962v2 },
  year={2019}
}

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}