模型:

vinvino02/glpn-nyu

英文

GLPN fine-tuned on NYUv2

国际通用本地路径网络(GLPN)模型在NYUv2上进行了微调,用于单目深度估计。该模型由Kim等人在 Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth 论文中介绍,并在 this repository 中首次发布。

免责声明:发布GLPN模型的团队未为此模型编写模型卡,因此此模型卡是由Hugging Face团队编写的。

模型描述

GLPN使用SegFormer作为骨干网络,并在顶部添加了一个轻量级头部用于深度估计。

意图和限制

您可以使用原始模型进行单目深度估计。查看 model hub 以查找您感兴趣的任务的微调版本。

如何使用

以下是如何使用此模型:

from transformers import GLPNFeatureExtractor, GLPNForDepthEstimation
import torch
import numpy as np
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

feature_extractor = GLPNFeatureExtractor.from_pretrained("vinvino02/glpn-nyu")
model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu")

# prepare image for the model
inputs = feature_extractor(images=image, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)
    predicted_depth = outputs.predicted_depth

# interpolate to original size
prediction = torch.nn.functional.interpolate(
    predicted_depth.unsqueeze(1),
    size=image.size[::-1],
    mode="bicubic",
    align_corners=False,
)

# visualize the prediction
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth = Image.fromarray(formatted)

有关更多代码示例,请参阅 documentation

BibTeX条目和引文信息

@article{DBLP:journals/corr/abs-2201-07436,
  author    = {Doyeon Kim and
               Woonghyun Ga and
               Pyunghwan Ahn and
               Donggyu Joo and
               Sehwan Chun and
               Junmo Kim},
  title     = {Global-Local Path Networks for Monocular Depth Estimation with Vertical
               CutDepth},
  journal   = {CoRR},
  volume    = {abs/2201.07436},
  year      = {2022},
  url       = {https://arxiv.org/abs/2201.07436},
  eprinttype = {arXiv},
  eprint    = {2201.07436},
  timestamp = {Fri, 21 Jan 2022 13:57:15 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2201-07436.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}