模型:
ydshieh/vit-gpt2-coco-en-ckpts
这个模型绝不是最先进的模型,但是仍然能够产生合理的图像描述结果。它主要是为了证明 ? FlaxVisionEncoderDecoder 框架的概念而进行的微调。
模型的使用方法如下:
import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as img: pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values def generate_step(pixel_values): output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds preds = generate_step(pixel_values) print(preds) # should produce # ['a cat laying on top of a couch next to another cat']