模型:
yiyanghkust/finbert-fls
Forward-looking statements (FLS) inform investors of managers’ beliefs and opinions about firm's future events or results. Identifying forward-looking statements from corporate reports can assist investors in financial analysis. FinBERT-FLS is a FinBERT model fine-tuned on 3,500 manually annotated sentences from Management Discussion and Analysis section of annual reports of Russell 3000 firms.
Input : A financial text.
Output : Specific-FLS , Non-specific FLS, or Not-FLS.
You can use this model with Transformers pipeline for forward-looking statement classification.
# tested in transformers==4.18.0 from transformers import BertTokenizer, BertForSequenceClassification, pipeline finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-fls',num_labels=3) tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-fls') nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer) results = nlp('We expect the age of our fleet to enhance availability and reliability due to reduced downtime for repairs.') print(results) # [{'label': 'Specific FLS', 'score': 0.77278733253479}]
Visit FinBERT.AI for more details on the recent development of FinBERT.