模型:

yuanzhoulvpi/chinese_bloom_7b_chat_v2

中文

体验链接

  • ? http://101.68.79.42:7861/
  • ?更新

    模型链接 训练的数据量 模型版本 备注
    https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat 15w中文指令数据 v1
    https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat_v2 150w条中文指令数据 v2 目前已经测试过效果,相较于v1,效果有所提升
    https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat_v3 420w条中文指令数据 v3 目前效果还没测试,欢迎大家测试

    介绍

  • ✅ 对 bloom-7b 模型做了sft,本次版本为V2版本(使用了150w条有监督数据做sft),相较于V1版本,效果更好!!!
  • ? 训练代码和推理代码全部分享,可以查看链接 https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom
  • 如何使用

    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    
    checkpoint = "yuanzhoulvpi/chinese_bloom_7b_chat_v2"#"bigscience/bloomz-3b" #"bigscience/bloom-7b1"#  "output_dir/checkpoint-8260"#
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
    model = AutoModelForCausalLM.from_pretrained(checkpoint).half().cuda()
    
    PROMPT_DICT = {
        "prompt_input": (
            "Below is an instruction that describes a task, paired with an input that provides further context. "
            "Write a response that appropriately completes the request.\n\n"
            "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
        ),
        "prompt_no_input": (
            "Below is an instruction that describes a task. "
            "Write a response that appropriately completes the request.\n\n"
            "### Instruction:\n{instruction}\n\n### Response:"
        ),
    }
    
    from typing import Optional
    def generate_input(instruction:Optional[str]= None, input_str:Optional[str] = None) -> str:
        if input_str is None:
            return PROMPT_DICT['prompt_no_input'].format_map({'instruction':instruction})
        else:
            return PROMPT_DICT['prompt_input'].format_map({'instruction':instruction, 'input':input_str})
    
    
    for i in range(5):
        print("*"*80)
    
        inputs = tokenizer.encode(generate_input(instruction="你是谁"), return_tensors="pt")
        outputs = model.generate(inputs,num_beams=3,
                                max_new_tokens=512,
                                do_sample=False, 
                                top_k=10,
                                penalty_alpha=0.6,
                                temperature=0.8,
                                repetition_penalty=1.2)
        print(tokenizer.decode(outputs[0]))