模型:

yuanzhoulvpi/vit-gpt2-image-chinese-captioning

英文

模型介绍

  • vit对图像做encoder,然后再用gpt2做decoder
  • vit模型使用的是 google/vit-base-patch16-224 , gpt2使用的是 yuanzhoulvpi/gpt2_chinese
  • 本模型支持中文
  • 训练代码

    https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/vit-gpt2-image-chinese-captioning

    推理代码

    infer

    from transformers import (VisionEncoderDecoderModel, 
                              AutoTokenizer,ViTImageProcessor)
    import torch
    from PIL import Image
    
    vision_encoder_decoder_model_name_or_path = "yuanzhoulvpi/vit-gpt2-image-chinese-captioning"#"vit-gpt2-image-chinese-captioning/checkpoint-3200"
    
    processor = ViTImageProcessor.from_pretrained(vision_encoder_decoder_model_name_or_path)
    tokenizer = AutoTokenizer.from_pretrained(vision_encoder_decoder_model_name_or_path)
    model = VisionEncoderDecoderModel.from_pretrained(vision_encoder_decoder_model_name_or_path)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    
    max_length = 16
    num_beams = 4
    gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
    
    
    def predict_step(image_paths):
        images = []
        for image_path in image_paths:
            i_image = Image.open(image_path)
            if i_image.mode != "RGB":
                i_image = i_image.convert(mode="RGB")
    
            images.append(i_image)
    
        pixel_values = processor(images=images, return_tensors="pt").pixel_values
        pixel_values = pixel_values.to(device)
    
        output_ids = model.generate(pixel_values, **gen_kwargs)
    
        preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        preds = [pred.strip() for pred in preds]
        return preds
    
    
    predict_step(['bigdata/image_data/train-1000200.jpg'])
    

    效果

    example 1

    example 2

    对以上内容翻译成中文,不要翻译大写的英文, 保留a标签以及所有属性,按照此约束返回翻译后的中文

    模型介绍

  • vit对图像做encoder,然后再用gpt2做decoder
  • vit模型使用的是 google/vit-base-patch16-224 , gpt2使用的是 yuanzhoulvpi/gpt2_chinese
  • 本模型支持中文
  • 训练代码

    https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/vit-gpt2-image-chinese-captioning

    推理代码

    推理

    from transformers import (VisionEncoderDecoderModel, 
                              AutoTokenizer,ViTImageProcessor)
    import torch
    from PIL import Image
    
    vision_encoder_decoder_model_name_or_path = "yuanzhoulvpi/vit-gpt2-image-chinese-captioning"#"vit-gpt2-image-chinese-captioning/checkpoint-3200"
    
    processor = ViTImageProcessor.from_pretrained(vision_encoder_decoder_model_name_or_path)
    tokenizer = AutoTokenizer.from_pretrained(vision_encoder_decoder_model_name_or_path)
    model = VisionEncoderDecoderModel.from_pretrained(vision_encoder_decoder_model_name_or_path)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    
    max_length = 16
    num_beams = 4
    gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
    
    
    def predict_step(image_paths):
        images = []
        for image_path in image_paths:
            i_image = Image.open(image_path)
            if i_image.mode != "RGB":
                i_image = i_image.convert(mode="RGB")
    
            images.append(i_image)
    
        pixel_values = processor(images=images, return_tensors="pt").pixel_values
        pixel_values = pixel_values.to(device)
    
        output_ids = model.generate(pixel_values, **gen_kwargs)
    
        preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        preds = [pred.strip() for pred in preds]
        return preds
    
    
    predict_step(['bigdata/image_data/train-1000200.jpg'])
    

    效果

    示例 1

    示例 2