模型:
yuanzhoulvpi/vit-gpt2-image-chinese-captioning
https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/vit-gpt2-image-chinese-captioning
from transformers import (VisionEncoderDecoderModel, AutoTokenizer,ViTImageProcessor) import torch from PIL import Image
vision_encoder_decoder_model_name_or_path = "yuanzhoulvpi/vit-gpt2-image-chinese-captioning"#"vit-gpt2-image-chinese-captioning/checkpoint-3200" processor = ViTImageProcessor.from_pretrained(vision_encoder_decoder_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(vision_encoder_decoder_model_name_or_path) model = VisionEncoderDecoderModel.from_pretrained(vision_encoder_decoder_model_name_or_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device)
max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = processor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds predict_step(['bigdata/image_data/train-1000200.jpg'])
https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/vit-gpt2-image-chinese-captioning
from transformers import (VisionEncoderDecoderModel, AutoTokenizer,ViTImageProcessor) import torch from PIL import Image
vision_encoder_decoder_model_name_or_path = "yuanzhoulvpi/vit-gpt2-image-chinese-captioning"#"vit-gpt2-image-chinese-captioning/checkpoint-3200" processor = ViTImageProcessor.from_pretrained(vision_encoder_decoder_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(vision_encoder_decoder_model_name_or_path) model = VisionEncoderDecoderModel.from_pretrained(vision_encoder_decoder_model_name_or_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device)
max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = processor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds predict_step(['bigdata/image_data/train-1000200.jpg'])