模型:
yuvalkirstain/PickScore_v1
该模型是一个用于文本生成图片的评分函数。它以提示和生成的图片作为输入,并输出一个得分。它可以用作通用的评分函数,用于人类偏好预测、模型评估、图片排序等任务。有关更多详细信息,请参阅我们的论文 Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation 。
该模型是使用 Pick-a-Pic dataset 对 CLIP-H 进行微调而得到的。
使用下面的代码来开始使用该模型。
# import from transformers import AutoProcessor, AutoModel # load model device = "cuda" processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1" processor = AutoProcessor.from_pretrained(processor_name_or_path) model = AutoModel.from_pretrained(model_pretrained_name_or_path).eval().to(device) def calc_probs(prompt, images): # preprocess image_inputs = processor( images=images, padding=True, truncation=True, max_length=77, return_tensors="pt", ).to(device) text_inputs = processor( text=prompt, padding=True, truncation=True, max_length=77, return_tensors="pt", ).to(device) with torch.no_grad(): # embed image_embs = model.get_image_features(**image_inputs) image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True) text_embs = model.get_text_features(**text_inputs) text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True) # score scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0] # get probabilities if you have multiple images to choose from probs = torch.softmax(scores, dim=-1) return probs.cpu().tolist() pil_images = [Image.open("my_amazing_images/1.jpg"), Image.open("my_amazing_images/2.jpg")] prompt = "fantastic, increadible prompt" print(calc_probs(prompt, pil_images))
该模型是在 Pick-a-Pic dataset 上训练的。
TODO - 添加论文。
如果您发现这个工作有用,请引用:
@inproceedings{Kirstain2023PickaPicAO, title={Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation}, author={Yuval Kirstain and Adam Polyak and Uriel Singer and Shahbuland Matiana and Joe Penna and Omer Levy}, year={2023} }
APA:
[需要更多信息]