模型:
zake7749/chinese-lyrics-generation-mass
该存储库演示了一个格式可控的中文歌词生成器,在 Chinese-Lyric-Corpus 上进行微调,使用类似 MASS 的策略。
from transformers import MT5ForConditionalGeneration, MT5Tokenizer, Text2TextGenerationPipeline model_path = "zake7749/chinese-lyrics-generation-mass" model = MT5ForConditionalGeneration.from_pretrained(model_path) tokenizer = MT5Tokenizer.from_pretrained(model_path) pipe = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer)
template = "風花雪月。像XXXXXXXXXX。日升月落。仿若XXXXXXXXXX。" lyric = pipe(template, max_length=128, top_p=0.8, do_sample=True, repetition_penalty=1.2)[0]['generated_text'] print(lyric) # 風花雪月。像你在我的夢裡慢慢散落。日升月落。仿若我宿命無法陪隨你走過。 template = "XXXXXXX留戀。XXXXXXX。XXX燈火XXXX。XXX手牽手XXXX。" lyric = pipe(template, max_length=128, top_p=0.8, do_sample=True, repetition_penalty=1.2)[0]['generated_text'] print(lyric) # 我們說好一生不留戀。我們相約在夏天。我們的燈火相偎相牽。我們說好手牽手到永遠。
template = "分XXXXXX。手XXXXXXXXX。之XXXXXXX。後XXXXXXXXX。" lyric = pipe(template, max_length=128, top_p=0.8, do_sample=True, repetition_penalty=1.2)[0]['generated_text'] print(lyric) # 分開後激情浮現。手牽著手走過的那一天。之間有太多的危險。後悔一點點,傷心一片。
template = "餘生的光陰牽你手前行。我們共赴一場光年的旅行。XXXXXXXXXX。XXXXXXXXXXXX。" lyric = pipe(template, max_length=128, top_p=0.8, do_sample=True, repetition_penalty=1.2)[0]['generated_text'] print(lyric) # 餘生的光陰牽你手前行。我們共赴一場光年的旅行。走過的經歷新舊的記憶。都是帶著珍珠淚水無法代替。
import random num_example = 5 min_sentence_num, max_sentence_num = 2, 5 min_characher_num, max_character_num = 4, 10 for example_id in range(num_example): num_sentences = random.randint(min_sentence_num, max_sentence_num) num_words = ["X" * random.randint(min_characher_num, max_character_num) for _ in range(num_sentences)] template = "。".join(num_words) + "。" lyric = pipe(template, max_length=128, top_p=0.8, do_sample=True, repetition_penalty=1.2)[0]['generated_text'] print(f"{example_id + 1}. {lyric}") # 1. 愛不愛我。讓自己難過。你的擁抱是那麼多。 # 2. 那一天我們重相見。你已站在那個熟悉的街邊。讓我魂牽夢繞在肩。有你的明天。不再留戀。飛過天邊。 # 3. 誰知我們入骨的相思。深深地被俘虜。苦澀滋味含在茶中傾訴。餘情未了落幕。愛到痛處奢望幸福。 # 4. 為什麼你一直讓我傷心。總覺得對你太著迷。 # 5. 一點可憐。還在期待你會出現。哪怕只是匆匆一眼。
该歌词生成器仅用于学术目的。使用该模型的用户应谨慎,并在将其用于任何商业或非学术用途之前仔细评估结果。我们对使用或误用该模型而导致的任何损害或损失不承担任何责任。