模型:
zanelim/singbert
SingBert - 适用于新加坡和马来西亚的新马英语(Singlish)和门牙语(Manglish)的Bert模型。
BERT base uncased ,使用预训练在 singlish 和 manglish 数据上微调。
>>> from transformers import pipeline >>> nlp = pipeline('fill-mask', model='zanelim/singbert') >>> nlp("kopi c siew [MASK]") [{'sequence': '[CLS] kopi c siew dai [SEP]', 'score': 0.5092713236808777, 'token': 18765, 'token_str': 'dai'}, {'sequence': '[CLS] kopi c siew mai [SEP]', 'score': 0.3515934646129608, 'token': 14736, 'token_str': 'mai'}, {'sequence': '[CLS] kopi c siew bao [SEP]', 'score': 0.05576375499367714, 'token': 25945, 'token_str': 'bao'}, {'sequence': '[CLS] kopi c siew. [SEP]', 'score': 0.006019321270287037, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] kopi c siew sai [SEP]', 'score': 0.0038361591286957264, 'token': 18952, 'token_str': 'sai'}] >>> nlp("one teh c siew dai, and one kopi [MASK].") [{'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]', 'score': 0.6176503300666809, 'token': 1039, 'token_str': 'c'}, {'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]', 'score': 0.21094971895217896, 'token': 1051, 'token_str': 'o'}, {'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]', 'score': 0.13027705252170563, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] one teh c siew dai, and one kopi! [SEP]', 'score': 0.004680239595472813, 'token': 999, 'token_str': '!'}, {'sequence': '[CLS] one teh c siew dai, and one kopi w [SEP]', 'score': 0.002034128177911043, 'token': 1059, 'token_str': 'w'}] >>> nlp("dont play [MASK] leh") [{'sequence': '[CLS] dont play play leh [SEP]', 'score': 0.9281464219093323, 'token': 2377, 'token_str': 'play'}, {'sequence': '[CLS] dont play politics leh [SEP]', 'score': 0.010990909300744534, 'token': 4331, 'token_str': 'politics'}, {'sequence': '[CLS] dont play punk leh [SEP]', 'score': 0.005583590362221003, 'token': 7196, 'token_str': 'punk'}, {'sequence': '[CLS] dont play dirty leh [SEP]', 'score': 0.0025784350000321865, 'token': 6530, 'token_str': 'dirty'}, {'sequence': '[CLS] dont play cheat leh [SEP]', 'score': 0.0025066907983273268, 'token': 21910, 'token_str': 'cheat'}] >>> nlp("catch no [MASK]") [{'sequence': '[CLS] catch no ball [SEP]', 'score': 0.7922210693359375, 'token': 3608, 'token_str': 'ball'}, {'sequence': '[CLS] catch no balls [SEP]', 'score': 0.20503675937652588, 'token': 7395, 'token_str': 'balls'}, {'sequence': '[CLS] catch no tail [SEP]', 'score': 0.0006608376861549914, 'token': 5725, 'token_str': 'tail'}, {'sequence': '[CLS] catch no talent [SEP]', 'score': 0.0002158183924620971, 'token': 5848, 'token_str': 'talent'}, {'sequence': '[CLS] catch no prisoners [SEP]', 'score': 5.3481446229852736e-05, 'token': 5895, 'token_str': 'prisoners'}] >>> nlp("confirm plus [MASK]") [{'sequence': '[CLS] confirm plus chop [SEP]', 'score': 0.992355227470398, 'token': 24494, 'token_str': 'chop'}, {'sequence': '[CLS] confirm plus one [SEP]', 'score': 0.0037301010452210903, 'token': 2028, 'token_str': 'one'}, {'sequence': '[CLS] confirm plus minus [SEP]', 'score': 0.0014284878270700574, 'token': 15718, 'token_str': 'minus'}, {'sequence': '[CLS] confirm plus 1 [SEP]', 'score': 0.0011354683665558696, 'token': 1015, 'token_str': '1'}, {'sequence': '[CLS] confirm plus chopped [SEP]', 'score': 0.0003804611915256828, 'token': 24881, 'token_str': 'chopped'}] >>> nlp("die [MASK] must try") [{'sequence': '[CLS] die die must try [SEP]', 'score': 0.9552758932113647, 'token': 3280, 'token_str': 'die'}, {'sequence': '[CLS] die also must try [SEP]', 'score': 0.03644804656505585, 'token': 2036, 'token_str': 'also'}, {'sequence': '[CLS] die liao must try [SEP]', 'score': 0.003282855963334441, 'token': 727, 'token_str': 'liao'}, {'sequence': '[CLS] die already must try [SEP]', 'score': 0.0004937972989864647, 'token': 2525, 'token_str': 'already'}, {'sequence': '[CLS] die hard must try [SEP]', 'score': 0.0003659659414552152, 'token': 2524, 'token_str': 'hard'}]:
以下是如何在PyTorch中使用此模型获取给定文本特征的方法:
from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('zanelim/singbert') model = BertModel.from_pretrained("zanelim/singbert") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input)
以及在TensorFlow中:
from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained("zanelim/singbert") model = TFBertModel.from_pretrained("zanelim/singbert") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input)限制和偏见
该模型是在口语化的新加坡和马来西亚语料库上进行微调的,因此最适合用于涉及主要语言-英语、华语、马来语的下游任务。此外,由于训练数据主要来自论坛,存在固有的偏见,请注意。
口语化的新加坡英语和马来西亚英语语料库(它们都是英语、华语、泰米尔语、马来语以及其他方言如福建话、粤语或潮州话的混合体)。这些语料库是从subreddits- r/singapore 和 r/malaysia,以及像hardwarezone这样的论坛中收集的。
使用 bert base uncased 个词汇和检查点(预训练权重)进行初始化。从训练数据中进一步提取了1000个自定义词汇标记(与原始bert词汇不重叠),并填充到原始bert词汇中未使用的标记中。
进一步使用以下超参数对训练数据进行了微调: